• Tiada Hasil Ditemukan

Crack propagation of metal powder compact

N/A
N/A
Protected

Academic year: 2022

Share "Crack propagation of metal powder compact"

Copied!
10
0
0

Tekspenuh

(1)

#RACK0ROPAGATIONOF-ETAL0OWDER#OMPACT

3URAYA-OHD4AHIR!HMAD+AMAL!RIFlN.ORHAMIDI-UHAMADAND.IK!BDULLAH.IK-OHAMED

$EPARTMENTOF-ECHANICAL-ATERIALS%NGINEERING 5NIVERSITI+EBANGSAAN-ALAYSIA

5+-"ANGI3ELANGOR -ALAYSIA

%MAILSURAYA?MTAHIR YAHOOCOM

2ECEIVED$ATETH!UGUST !CCEPTED$ATETH-ARCH

!"342!#4

3IMULATIONOFCRACKPROPAGATIONINMETALPOWDERDURINGTHECOLDCOMPACTIONPROCESSISPRESENTEDIN THISPAPER"ASEDONAFRACTURECRITERIONOFGRANULARMATERIALSINCOMPRESSIONADISPLACEMENTBASEDlNITE ELEMENTMODELHASBEENDEVELOPEDTOSIMULATETHEFRACTUREPROCESSINAMULTILEVELCOMPONENTMADE OFIRONPOWDER%STIMATIONOFFRACTURETOUGHNESSVARIATIONWITHRELATIVEDENSITYISESTABLISHEDINORDERTO PROVIDETHEFRACTUREPARAMETERSASCOMPACTIONPROCEEDS!lNITEELEMENTMODELWITHADAPTIVEREMESHING TECHNIQUEISUSEDTOACCOMMODATECHANGESINGEOMETRYDURINGTHECOMPACTIONANDFRACTUREPROCESS WHILEFRICTIONBETWEENCRACKFACESISMODELLEDUSINGTHESIXNODESISOPARAMETRICINTERFACEELEMENTS 4WOWIDELYUSEDYIELDCRITERIAFORPOWDERCOMPACTNAMELY-OHR#OULOMBAND%LLIPTICALCAPAREUSED INTHEMODELS$IFFERENTCRACKGROWTHPATTERNSOBTAINEDBYUSINGTHESETWOYIELDCRITERIAAREPRESENTED ANDCOMPAREDINTERMSOFTHEINmUENCEOFSHEARSTRESSANDRELATIVEDENSITYDISTRIBUTIONS%VENTHOUGH THECRACKSTARTSATDIFFERENTCOMPACTIONSTEPANDDIFFERENTCRACKPATTERNSAREOBTAINEDWHENDIFFERENT YIELDCRITERIAISUSEDSHEARCRACKISPREDICTEDTOSTARTSINTHEREGIONWITHLOWERRELATIVEDENSITYANDHIGHER SHEARSTRESSINBOTHMODELS

+EYWORDS0OWDERCOMPACTFRACTURECRITERIAFRACTURETOUGHNESSlNITEELEMENT

!"342!+

0ENYELAKUANPERAMBATANRETAKSEMASAPROSESPEMADATANSERBUKLOGAMDIBENTANGKANDIDALAMKERTAS INI"ERDASARKANKRITERIARETAKBAGIBAHANSERBUKTERMAMPATMODELUNSURTERHINGGABERDASARKANANJAKAN TELAHDIBANGUNKANUNTUKMENYELAKUPROSESKERETAKANDALAMKOMPONENBERBILANGARASYANGDIHASILKAN DARIPADASERBUKBESI!NGGARANHUBUNGANKELIATANRETAKDENGANKETUMPATANRELATIFDIBANGUNKANSEBAGAI PARAMETERRETAKSEMASAPROSESPEMADATANDIJALANKAN-ODELUNSURTERHINGGADENGANTEKNIKPENJARINGAN ADAPTIFDIGUNAKANBAGIMENANGANIMASALAHPERUBAHANGEOMETRIYANGBESARSEMASAPROSESPEMADATANDAN KERETAKANMANAKALAGESERANANTARAMUKARETAKDIMODELKANDENGANMENGGUNAKANUNSURANTARAMUKAENAM NODSEPARAMETER$UAJENISKRITERIAALAHYANGBIASADIGUNAKANBAGISERBUKTERPADATIAITU-OHR#OULOMB DANTUKUPELIPSTELAHDIGUNAKAN#ORAKPERAMBATANRETAKBERBEZAYANGDIPEROLEHIDENGANMENGGUNAKAN KEDUADUAJENISKRITERIAALAHTERSEBUTTELAHDIBENTANGKANDANDIBANDINGKANDARISEGIPENGARUHTABURAN

(2)

TEGASANRICIHDANKETUMPATANRELATIF-ESKIPUNRETAKBERMULAPADALANGKAHPEMADATANYANGBERBEZA DANCORAKPEMADATANYANGBERBEZADIPEROLEHIAPABILAKRITERIAALAHYANGBERBEZADIGUNAKANRETAKRICIH DIRAMALKANBERMULADIKAWASANYANGBERKETUMPATANRENDAHDANMEMPUNYAITEGASANRICIHYANGTINGGI BAGIKEDUADUAJENISMODEL

+ATAKUNCI3ERBUKPADATKRITERIAPATAHKEKUATANPATAHUNSURTERHINGGA

).42/$5#4)/.

-ANUFACTURING PARTS USING POWDER METALLURGY 0- INVOLVES FOUR MAJOR STEPS POWDER AND LUBRICANT MIXING COMPACTING POWDERS INTO APPROPRIATE SHAPES IN CLOSED DIES TO PRODUCE GREENCOMPACTSSINTERINGTHEGREENCOMPACTS AT ELEVATED TEMPERATURE AND FINALLY POST SINTERINGSECONDARYOPERATIONS#HTOUROUETAL $ETAILSONCOLDCOMPACTIONPROCESSCAN BEFOUNDIN!RIFlN WHERETHENUMERICAL MODELLING OF THE COMPLETE CYCLE HAS BEEN DEVELOPED AND VALIDATED BY EXPERIMENTS )N MODELLINGTHECOMPACTIONPROCESSTHEMACRO MECHANICALMODELLINGAPPROACHISUSEDINTHIS

&)'52%'EOMETRYANDBOUNDARYCONDITIONSOFAROTATIONALmANGEDCOMPONENT Powder

Die

Top punch

Bottom punch

Core rod r = 6.3mm

4.6 mm 15.6 mm

11.7 mm

13.7 mm

WORKWHERETHEPOWDERMEDIUMISCONSIDERED AS A CONTINUUM THAT UNDERGOES LARGE ELASTIC PLASTICDEFORMATION#ONSTITUTIVEMODELBASEDON GRANULARMATERIALISUSEDSINCEPOWDERBEHAVES SIMILARLY TO A FRICTIONAL GRANULAR MATERIAL WITH REGARDTODILATANCYANDDENSIlCATIONBEHAVIOUR 'OLLIONETAL

%XTENSIVE LITERATURE REVIEWS ON MATERIALS UNDER COMPRESSION REVEAL THAT GENERALLY CRACK GROWSINMODE))NOMATTERWHETHERTHEMATERIAL ISBRITTLEORDUCTILEASREPORTEDBY!RUN2OYET AL )SAKSSON AND 3TAHLE

$E"REMAECKERAND&ERIS (OWEVERCRACK PATTERNSAREBEINGINmUENCEDBYTHEAMOUNTOF

(3)

APPLIED STRESS AND FRICTION BETWEEN THE CRACK SURFACES)NTHISPAPERASUITABLEFRACTURECRITERION FORMETALPOWDERDURINGCOLDCOMPACTIONPROCESS ISOUTLINEDTAKINGINTOACCOUNTSTHEMECHANICAL BEHAVIOUROFMETALPOWDERUNDERCOMPACTION PROCESS &INITE ELEMENT MODELLING OF THE CRACK INITIATIONANDPROPAGATIONHASBEENDEVELOPED USING&/242!.PROGRAMMINGLANGUAGEWHERE TWODIFFERENTYIELDCRITERIANAMELY-OHR#OULOMB ANDELLIPTICALCAP2OSCOE"URLAND YIELD CRITERIA WHICH ARE ORIGINALLY DEVELOPED FOR SOIL MECHANICSAREUSEDFORPOWDERMATERIAL

&)'52%3TRESSCOMPONENTATAPOINTNEARACRACKTIPINTHEPOLARCOORDINATESYSTEM Arbitrary

plane Q Sr

SQ Q

Q

TrQ

X Y

r

2a

0

Original crack tip

Original crack plane

-/$%,,).' /& &2!#452% ). 0/7$%2

#/-0!#4

!MULTILEVELCOMPONENTINTHISCASEAROTATIONAL FLANGED COMPONENT IS MODELLED BY AN AXISYMMETRICREPRESENTATIONASSHOWNIN&IGURES AND)RONPOWDERWITHMATERIALPROPERTIESAS LISTEDIN!IDAH ISCOMPACTEDBYBOTTOM AND TO PUNCH MOVEMENTS4OTAL DISPLACEMENT OFTHEBOTTOMPUNCHDBMMWHILETHETOP PUNCHDTMMATTHEENDOFCOMPACTION PROCESS

C 3TEP B 3TEP

A 3TEP

&)'52%!XISYMMETRICREPRESENTATIONOFCOMPACTIONPROCESSATA 3TEPB 3TEPANDC 3TEP

(4)

)NTHISWORKTHECOMPACTIONISPERFORMEDIN STEPSMOVEMENTOFBOTTOMANDTOPPUNCH RESPECTIVELYANDINTURNASSHOWNIN&IGURE4HIS MEANTHATATOTALDISPLACEMENTOFMMISlRST ACHIEVEDWHENTHEBOTTOMPUNCHHADlNISHEDA STEPSMOVEMENTSTEPTO FOLLOWEDBYA TOTALDISPLACEMENTOFMMBYTHETOPPUNCH AFTERASTEPSMOVEMENTSTEPTO

&2!#452%#2)4%2)!

%VENTHOUGHITISBELIEVEDTHATFAILUREINMETAL POWDER COMPACTION IS DUE TO SHEAR FRACTURE MODE )) THE FRACTURE CRITERION IN NEED MUST NOT NEGLECT THE POSSIBILITY OF FRACTURE DUE TO OPENINGMODEMODE) 3INCEPOWDERBEHAVE SIMILARLY TO FRICTIONAL GRANULAR MATERIALS LIKE ROCKINCOMPRESSIONFRACTURECRITERIABY1UIHUA ET AL IS ADOPTED IN THIS WORK "ASED ON THE EXAMINATION OF MODE ) AND MODE )) STRESS INTENSITYFACTORSONTHEARBITRARYPLANEθBASED ONTHESTRESSCOMPONENTNEARACRACKTIPASIN

&IGURE +)θ AND +))θ VARYING WITHθO

≤ θ ≤O NO MATTER WHAT KIND OF LOADING CONDITION IS APPLIED THE FRACTURE CRITERION 1UIHUAETAL STATEDTHATFORMODE)FRACTURE TOOCCUR

1<K

K <K

K ,K = K at

II max I max

IIc Ic

I max Ic QIc

&ORMODE))FRACTURE

)N ORDER TO DETERMINE +) MAX AND +)) MAX IN EQUATIONS AND MODE)ANDMODE))STRESS INTENSITYFACTORSINTHEDIRECTIONOFθISDElNED AS

KII( )Q KIsin cosQ Q KIIcosQ sin Q

¥

§¦

´

¶µ

2 2 2 1 3

2

2 2

+) θ AND +)) θ ARE CALCULATED ON THE MID NODESAROUNDTHECRACKTIPASSHOWNIN&IGURE TOOBTAINTHEMAXIMUM+)MAXAND+))MAXWHERE θ IS DEFINED AS POSITIVE IN THE ANTICLOCKWISE DIRECTIONFROMTHEORIGINALCRACKPLANE+)AND+)) INEQUATIONS AND ARETHESTRESSINTENSITY FACTORS IN THE ORIGINAL CRACK PLANE )N FINITE ELEMENTMETHODTHESEVALUESCANBECALCULATED USING THE DISPLACEMENT CORRELATION TECHNIQUE 0HANETAL ASBELOW

K G

L v v v v

I b d

c e

¥

§¦

´

¶µ K

P 1

2 4

( 2

&)'52%.ODESAROUNDTHECRACKTIPFORCALCULATIONOFTHESTRESSINTENSITYFACTORS Crack tip

x, u

d e

c b

y, v

(5)

K G

L u u u u

II b d

c e

¥

§¦

´

¶µ K

P 1

2 4

( 2

WHERE'ISTHESHEARMODULUS,ISTHEELEMENT LENGTHκ IS DEFINED ASκnV FOR PLANE STRAINORAXISYMMETRICPROBLEMWHEREVISTHE 0OISSONSRATIO4HEUANDVARETHEDISPLACEMENT COMPONENTS IN X AND Y DIRECTIONS RESPECTIVELY WHERETHESUBSCRIPTSINDICATETHEIRPOSITIONSAS SHOWNIN&IGURE

!$!04)6%-%3(!.$#2!#+-%#(!.)3-

!N ADAPTIVE FINITE ELEMENT MESH USING ERROR ESTIMATORBASEDONSTRESSERRORNORM:IENKIEWICZ :HU ISUSEDWHEREAUTOMATICREMESHING ISCALCULATEDATEACHSTEPDURINGTHECOMPACTION PROCESS %QUATIONS AND ARE USED TO CALCULATETHESTRESSINTENSITYFACTOR3)& OFMODE )+) ANDMODE))+)) 4HESEVALUESARECALCULATED ONTHENODESAROUNDTHECRACKTIPANDCRACKIS MODELLEDTOPROPAGATEINTERELEMENT"OUCHARD ETAL BYSPLITTINGMECHANISMOFCRACKTIP NODEINORDERTOPROVIDETWOADJACENTCRACKFACES 4HIS IS SIMILAR TO THE RELEASE NODE MECHANISM EXCEPTTHATTHEDIRECTIONOFCRACKPROPAGATION ISDEPENDINGONDIRECTIONCRITERIA

&2)#4)/.#2)4%2)!

#OULOMBFRICTIONLAWWHICHISOFTENADOPTEDIN FRICTIONPROBLEMSISUSEDINTHISWORKGIVENBY

&)'52%6ARIATIONOFGREENSTRENGTHWITHRELATIVEDENSITY 35

30

25

20

15

10

5

0

0.4 0.45 0.5 0.55 0.6 0.65 0.7 Relative Density, R´

Green Strength,Sus (MPa) Sus =148.66R´ – 65.627

Ff

T S, n T MSN

WHEREτ IS THE FRICTION SHEAR STRESSσ. IS THE NORMALSTRESSWHICHSHOULDBECOMPRESSIVEFOR FRICTIONTODEVELOPEDANDμISTHECOEFlCIENTOF FRICTION3IXNODESISOPARAMETRICELEMENTS!RIFlN AREUSEDASINTERFACEELEMENTSFORFRICTION BETWEENPOWDERMATERIALANDDIEWALLDURINGTHE COMPACTIONPROCESSASWELLASTOMODELFRICTION ONTHECRACKFACESINCONTACT

-/$%)&2!#452%4/5'(.%33+)#

"ASEDONAPPROXIMATEFORMULASFORMODE)FRACTURE TOUGHNESS+)# BY'IBSONAND!SHBY lNITE ELEMENTMODELSHAVEBEENDEVELOPEDBY#HOI AND 3ANKAR TO ESTIMATE THE VARIATION OF +)# AS A FUNCTION OF SOLIDITY OF CARBON FOAM "Y ASSUMINGTHATTHECRACKISPARALLELTOONEOFTHE PRINCIPALMATERIALAXES+)#CANBEESTIMATEDUSING THEFOLLOWINGFORMULA

WHEREσUS IS THE STRENGTH OF THE MATERIAL AND σMAX IS THE MAXIMUM PRINCIPAL STRESS 3TUDY ON MECHANICAL PROPERTIES OF IRON COMPACT HASBEENPERFORMEDBY0OQUILLONETAL WHICH PROVIDE THE VARIATION OF GREEN STRENGTH WITHRELATIVEDENSITYASSHOWNIN&IGURE5SING

(6)

ORENERGYREQUIREDTOCREATENEWCRACKSURFACES 4HUSITISALSOEQUALTOTHEAREAUNDERSTRESSSTRAIN CURVEUPTOFRACTURE%XPERIMENTALDATABY!IDAH ISUSEDINTHISWORKTOOBTAINTHESHEAR STRESSSTRAINCURVESATDIFFERENTCOMPACTIONLOAD ASIN&IGUREANDSUBSEQUENTLYUSEDTOESTIMATE THEVARIATIONOFMODE))FRACTURETOUGHNESS+))#

WITH RELATIVE DENSITY AS DEPICTED IN &IGURE GIVENBY

KIIC 0 1174. e6 5031. R' THE VARIATION OF GREEN STRENGTH EQUATION

BECOMES

KIC 148 6. '6 627.

max

R

S

WHEREρ IS THE RELATIVE DENSITY OF THE IRON COMPACTWITHRESPECTTOSOLIDIRON

-/$%))&2!#452%4/5'(.%33+))#

&RACTURETOUGHNESSOFAMATERIALISTHEAMOUNT OFENERGYAMATERIALCANABSORBSBEFOREFRACTURE

&)'52%3HEARSTRESSSTRAINCURVESFORCOMPACTSWITHDIFFERENTlNALCOMPACTIONLOAD 30

25

20

15

10

5

0

0 0.5 1 1.5 2 2.5 Shear Strain

Shear Stress (MPa)

25 kN 18 kN 15 kN 11 kN 7 kN

&)'52%6ARIATIONOF+))#WITHRELATIVEDENSITY Relative Density, R´

KIIC (MPa m1/2)

KIIC = 0,1174e6,5031Ra 4

3.5

3

2.5

2

1.5

0.4 0.45 0.5 0.55

(7)

WHEREρ ISTHERELATIVEDENSITYOFIRONCOMPACT ATTHEPOINTWITHMAXIMUM+))

2%35,4!.$$)3#533)/.

3INCE NO PRECRACK IS PRESENT IN THIS CASE THE DIRECTION OF MAXIMUM SHEAR STRESS IS USED AS THEORIGINALCRACKDIRECTIONINTHECALCULATIONOF +)θ AND+))θ FORTHElRSTCRACKFORMATION4HIS IS ACCEPTABLE BECAUSE THE SAME CONCLUSIONS REGARDING THE CRACK PATH ARE ACHIEVED IN MATERIALS UNDER COMPRESSION BY ASSUMING THATCRACKGROWSALONGTHEPLANEOFMAXIMUM SHEAR STRESS AS BY ASSUMING THAT CRACK FOLLOWS THEDIRECTIONOFMAXIMUM+)))SAKSSON3TAHLE 7ITHOUTPRECRACKINTHISWORKTHEPOINT WITHMAXIMUMSHEARSTRESSISTAKENASTHEPOINT WHERETHECRACKSTARTS

! SINGLE CRACK INITIATED FROM THE BOUNDARY SURFACE IS CONSIDERED IN THIS WORK 3IMULATION OF THE FRACTURE PROCESS SHOW THAT SHEAR CRACK STARTSATTHEENDOFSTEPWHEN-OHR#OULOMB YIELDCRITERIAISUSED4HESHEARSTRESSANDRELATIVE DENSITY DISTRIBUTIONS AT STEP ARE SHOWN IN

&IGURES A AND A RESPECTIVELY &ROM THESE TWOlGURESITCANBESEENTHATCRACKSTARTSINTHE REGIONWITHTHEHIGHESTSHEARSTRESSDISTRIBUTION BUTLOWESTRELATIVEDENSITYDISTRIBUTION3IMILARLY

&IGURESA ANDA SHOWTHATBYUSINGTHE ELLIPTICALCAPYIELDCRITERIASHEARCRACKSTARTSAT A POINT WITH MAXIMUM SHEAR STRESS BUT IN THE REGIONWHERETHERELATIVEDENSITYISMUCHLOWER )NTHISCASEHOWEVERCRACKSTARTSATTHEBEGINNING OFCOMPACTIONBYTHETOPPUNCHMOVEMENTSTEP WHERECOMPACTIONBYTHEBOTTOMPUNCHHAD COMPLETECAUSINGTHELOWERPARTOFCOMPACTED POWDER TO HAVE MUCH HIGHER RELATIVE DENSITY DISTRIBUTIONASSHOWNIN&IGUREA

!SCOMPACTIONPROCEEDSSIMULATIONSOFCRACK PROPAGATIONSHOWTHATDIFFERENTCRACKPATTERNS ARE OBTAINED BY USING DIFFERENT YIELD CRITERIA

#RACKPROPAGATIONDIRECTIONSBYUSINGTHETWO YIELDCRITERIAARELISTEDIN4ABLEINCLUDINGTHE RELATIVE DENSITY AT THE POINT WHERE CRACK lRST STARTSTOPROPAGATE.OFURTHERCRACKPROPAGATION OCCURSAFTERSTEPWHEN-OHR#OULOMBCRITERIA ISUSEDWHILECRACKPROPAGATESONLYONCEWHEN ELLIPTICALCAPCRITERIAISUSED

4HE VALUE OFθ IS CALCULATED WITH RESPECT TO THE EARLIER CRACK DIRECTION USING THE SIGN CONVENTIONASSHOWNIN&IGUREWHILEρISTHE RELATIVEDENSITYVALUEATTHEPOINTWHERECRACK PROPAGATES4HESEVALUESOFθASLISTEDIN4ABLE

SHOW THAT THE CRACK ALWAYS EXTENDED AWAY FROMTHEORIGINALCRACKDIRECTION.EGLECTINGTHE SIGN CONVENTION WHICH INDICATES THE DIRECTION OF STRESSES IT CAN BE SEEN FROM &IGURE A TO

&IGURE B AND &IGURE A TO &IGURE B THAT THECRACKPROPAGATESINTHEDIRECTIONWHERETHE SHEARSTRESSANDRELATIVEDENSITYAREMUCHHIGHER 3INCE RELATIVE DENSITY INCREASES AS COMPACTION PRESSUREINCREASES!IDAH0OQUILLONETAL IT CAN BE DEDUCED THAT THE CRACK GROWS INTHEDIRECTIONOFHIGHERCOMPACTIONPRESSURE 4HISISINLINEWITHTHECONCLUSIONMADEBY!RUN 2OYETAL WHICHARGUETHATCRACKGROWS INTHEDIRECTIONOFHIGHERCONlNINGHYDROSTATIC PRESSUREORCOMPACTIONPRESSUREINTHISCASE "YUSINGTHEELLIPTICALCAPYIELDCRITERIAWHICH PERMITS REPRESENTATION OF DENSIlCATION AS WELL AS HARDENING THE PREDICTED CRACK PROPAGATION DIRECTION IS ONLY≈ O AWAY FROM THE ORIGINAL CRACKPLANE4HISISALMOSTINTHEPLANEOFORIGINAL CRACK DIRECTION AS SHOWN IN &IGURE B AND

&IGUREB )NADDITIONTHECRACKSTARTSATTHE ENDOFSTEPANDPROPAGATESATSTEPWHICHIS MUCHLATERCOMPAREDTOTHEPREVIOUSCASEWHERE CRACKSTARTSATSTEPWHEN-OHR#OULOMBYIELD CRITERIAISUSED

4HENUMERICALANDEXPERIMENTALREPORTSBY PREVIOUSRESEARCHERSONLYPROVIDETHEANALYSISIN TERMSOFCRACKDIRECTIONWHENTHECRACKlRSTSTARTS TO PROPAGATE (ENCE FOR COMPARISON PURPOSES THEVALUEOFRELATIVEDENSITYATWHICHTHECRACK lRSTSTARTSTOPROPAGATEISGIVENIN4ABLEWHEN TWODIFFERENTYIELDCRITERIAAREUSED)TCANBESEEN FROM4ABLETHATTHECRACKPROPAGATIONDIRECTION ISMUCHNEARERTOTHEORIGINALCRACKPLANEWHEN CRACKSTARTSTOPROPAGATEATAPOINTWITHMUCH HIGHER RELATIVE DENSITY WHICH ALSO IMPLIES A MUCHHIGHERCOMPACTIONPRESSURE4HISISINDEED AGREEDVERYWELLWITHTHECONCLUSIONBY)SAKSSON AND3TAHLE WHICHSTATEDTHATTHEDIRECTION OFTHECRACKGROWTHWITHRESPECTTOTHEORIGINAL CRACKPLANEDECREASESWITHINCREASINGPRESSURE $UETOTHEMOVEMENTOFTHEBOTTOMPUNCH IN THE lRST STEPS THE TWO REGIONS WITH THE HIGHESTANDLOWESTRELATIVEDENSITYAREFORMED AROUNDTHESHARPCORNERPROVIDINGAHIGHDENSITY GRADIENTANDCAUSESTHECRACKTOPROPAGATESIN SUCHDIRECTIONASSHOWNIN&IGUREAND&IGURE 4HESHEARSTRESSESWHICHAREINITIALLYHIGHER AT THE BOUNDARY AS SHOWN IN &IGURE A AND

&IGUREA BECOMEMUCHLOWERASCOMPACTION PROCEEDS WHILE THE REGION WITH HIGHER SHEAR STRESSESISFORMEDSLIGHTLYCENTREDNEARTHESHARP

(8)

&)'52%3HEARSTRESSDISTRIBUTIONUSING-OHR#OULOMBYIELDCRITERIA

&)'52%2ELATIVEDENSITYDISTRIBUTIONUSING-OHR#OULOMBYIELDCRITERIA 4!",%$ETAILSOFCRACKPROPAGATION

5SING-OHR#OULOMB#RITERIA 5SING%LLIPTICAL#AP#RITERIA

#OMPACTION3TEP θo ρ #OMPACTION3TEP θo ρ

(9)

&)'52%3HEARSTRESSDISTRIBUTIONUSINGELLIPTICALCAPYIELDCRITERIA

&)'52%2ELATIVEDENSITYDISTRIBUTIONUSINGELLIPTICALCAPYIELDCRITERIA CORNERASSHOWNIN&IGUREB AND&IGUREB

!STHECONSEQUENCETHECRACKPROPAGATESINWARD STARTINGFROMTHEBOUNDARYTOWARDSTHEREGION WHERETHESHEARSTRESSESAREMUCHHIGHER

#/.#,53)/.

!DISPLACEMENTBASEDlNITEELEMENTMODELHAS BEENDEVELOPEDTOANALYSETHECRACKINITIATION

AND PROPAGATION IN A MULTI LEVEL COMPONENT MADEOFIRONPOWDERDURINGTHECOLDCOMPACTION PROCESS4WODIFFERENTYIELDCRITERIANAMELYTHE -OHR#OLOUMB AND ELLIPTICAL CAP YIELD CRITERIA HAVE BEEN USED IN THE MODEL 3HEAR CRACK IS PREDICTED TO STARTS IN THE REGION WITH LOWER RELATIVEDENSITYANDHIGHERSHEARSTRESSINBOTH MODELS%VENTHOUGHTHECRACKSTARTSATDIFFERENT

(10)

2%&%2%.#%3

!IDAH*UMAHAT!NALYSISOF4HERMO-ECHANICAL

"EHAVIOUR OF7ARM #OMPACTION 0ROCESS )N -ALAY ,ANGUAGE -ASTER OF 3CIENCE4HESIS 5NIVERSITI+EBANGSAAN-ALAYSIA-ALAYSIA

!RIFlN !+ -OHD )HSAN 0OWDER #OMPACTION

&INITE %LEMENT -ODELLING AND %XPERIMENTAL 6ALIDATION 0H$4HESIS 5NIVERSITY OF 7ALES 3WANSEA5NITED+INGDOM

!RUN 2OY9 .ARASIMHAN 2 !RORA 02 !N

%XPERIMENTAL)NVESTIGATIONOF#ONSTRAINT%FFECTS ON-IXED-ODE&RACTURE)NITIATIONIN!$UCTILE

!LUMINIUM!LLOY!CTA-ATE

"OUCHARD 0/ "AY & #HASTEL9 4OVENA )

#RACK0ROPAGATION-ODELLING5SINGAN!DVANCE 2EMESHING4ECHNIQUE#OMPUT-ETHODS!PPL -ECH%NGINEERING

#HOI 3 3ANKAR "6 &RACTURE4OUGHNESS OF

#ARBON &OAM *OURNALOF#OMPOSITE-ATERIALS

#HTOUROU('UILLOT-'AKWAYA!-ODELLING OF4HE-ETAL0OWDER#OMPACTION0ROCESS5SING 4HE #AP -ODEL 0ART %XPERIMENTAL -ATERIAL

#HARACTERISATION AND6ALIDATION )NTERNATIONAL

*OURNALOF3OLIDSAND3TRUCTURES

$E "REMAECKER *#L &ERRIS -# .UMERICAL -ODELS OF 3HEAR &RACTURE 0ROPAGATION

%NGINEERING&RACTURE-ECHANICS 'IBSON ,* AND !SHBY -& #ELLULAR 3OLIDS

3TRUCTURE AND 0ROPERTIES 3ECOND %DITION

#AMBRIDGE5NIVERSITYPRESS#AMBRIDGE5NITED +INGDOM

'OLLION*"OUVARD$3TUTZ0/NTHE2HEOLOGY OF-ETAL0OWDER$URING#OLD#OMPACTION0ROC )NT #ONF -ICROMECHANICS OF 'RANULAR -EDIA

0OWDERAND'RAINS%D*"IAREZAND2'OURVES PP

)SAKSSON03TAHLE0-ODE))#RACK0ATHS5NDER

#OMPRESSION IN "RITTLE 3OLIDS n!4HEORY AND

%XPERIMENTAL#OMPARISON)NTERNATIONAL*OURNAL OF3OLIDSAND3TRUCTURES

)SAKSSON03TAHLE0!$IRECTIONAL#RACK0ATH

#RITERIONFOR#RACK'ROWTHIN$UCTILE-ATERIALS 3UBJECTEDTO3HEARAND#OMPRESSIVE,OADING 5NDER 0LANE 3TRAIN #ONDITIONS )NTERNATIONAL

*OURNALOF3OLIDSAND3TRUCTURES 0HAN !6 .APIER *!, 'RAY ,* +APLAN4

3TRESSINTENSITYFACTORANALYSISOFFRICTIONSLIDING AT DISCONTINUITY INTERFACES AND JUNCTIONS

#OMPUTATIONAL-ECHANICS 0OQUILLON $ "ACO#ARLES64AILHADES 0H !NDRIEU

% #OLD #OMPACTION OF )RON 0OWDERSˆ

2ELATIONS "ETWEEN 0OWDER -ORPHOLOGY AND -ECHANICAL 0ROPERTIES 0ART )) "ENDING4ESTS 2ESULTS AND !NALYSIS 0OWDER4ECHNOLOGY n

2OSCOE+("URLAND*"/NTHE'ENERALIZED 3TRESS3TRAIN"EHAVIOUROF7ET#LAY%NGINEERING 0LASTICITY %DS (AYMAN ,ECKIS #AMBRIDGE 5NIVERSITY0RESS#AMBRIDGE%NGLAND 1UIHUA 2AO :ONGQI 3UN / 3TEPHANSSON #HUNLIN

,I"3TILLBORG3HEAR&RACTURE-ODE)) OF"RITTLE2OCK)NT*OURNALOF2OCK-ECHANICS -INING-INING3CIENCES

:IENKIEWICZ /# :HU *: %RROR %STIMATES AND !DAPTIVE 2EFINEMENT FOR 0LATE "ENDING 0ROBLEMS)NT*OURNALFOR.UMERICAL-ETHODSIN

%NGINEERING COMPACTION STEP AND DIFFERENT CRACK PATTERNS

ARE OBTAINED WHEN DIFFERENT YIELD CRITERIA IS USED CRACK IS PREDICTED TO STARTS AT ABOUT THE SAME POINT NEAR THE SHARP INNER CORNER OF THE COMPONENT IN THE TWO DIFFERENT MODELS !S COMPACTION PROCEEDS THE CRACK PROPAGATES IN THE DIRECTION WHERE THE SHEAR STRESS AND THE RELATIVE DENSITY ARE MUCH HIGHER 0ROPAGATION OFTHECRACKTOWARDSTHEREGIONOFMUCHHIGHER RELATIVE DENSITY DISTRIBUTION ALSO IMPLIES THAT

THE CRACK GROWS IN THE DIRECTION OF HIGHER COMPACTION PRESSURE WHICH IS IN LINE WITH THE CONCLUSION MADE BY PREVIOUS RESEARCHERS ON CRACK GROWTH IN MATERIALS UNDER COMPRESSION

"Y USING THE ELLIPTICAL CAP YIELD CRITERIA WHICH PERMITSREPRESENTATIONOFDENSIlCATIONASWELLAS HARDENINGTHECRACKPROPAGATESONLYONCEAND THECRACKPROPAGATIONDIRECTIONISALMOSTINTHE PLANEOFORIGINALCRACKDIRECTION

Rujukan

DOKUMEN BERKAITAN

will have relatively more volatile prices. Terrace houses provide some land in front and back while semi-detached have land space on the side of the building. Of course, the

The presence of graffiti vandalism on vandalised property, the maintenance level of the property, the quality of the building (construction), the quality of the building (design

Conclusions This paper presents finite element simulations of mixed-mode fatigue crack propagation in 2D problems based on linear elastic fracture mechanics by adopting the

Component placement.. The component for Layout 1 were positioned at the corner of the test vehicle board which is near with point D. The point D of FPCB is lower deformation

Finally, there is the method of unobtrusive control (Tompkins &amp; Cheney, 1985) which is described as getting employees to control themselves. It is a process by which members of

To investigate numerically the effects of different crack parameters including crack aspect ratio, crack eccentricity and crack inclination on the stress intensity

In addition, at present, the Library has established five corners namely the American Corner, World Bank Corner, Sampoerna Corner, Hatta Corner and Nation

Consider the heat transfer by natural convection between a hot (or cold) vertical plate with a height of L at uniform temperature T, and a surrounding fluid that