• Tiada Hasil Ditemukan

BASED EMOTION RECOGNITION

N/A
N/A
Protected

Academic year: 2022

Share "BASED EMOTION RECOGNITION "

Copied!
79
0
0

Tekspenuh

(1)

The copyright © of this thesis belongs to its rightful author and/or other copyright owner. Copies can be accessed and downloaded for non-commercial or learning purposes without any charge and permission. The thesis cannot be reproduced or quoted as a whole without the permission from its rightful owner. No alteration or changes in format is allowed without permission from its rightful owner.

(2)

AN ENHANCED COMPUTATIONAL MODEL BASED ON SOCIAL SPIDER OPTIMISATION ALGORITHM FOR EEG-

BASED EMOTION RECOGNITION

ABDULLAH YOUSEF AWWAD AL-QAMMAZ

DOCTOR OF PHILOSOPHY UNIVERSITY UTARA MALAYSIA

2019

(3)
(4)

ii

Permission to Use

In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.

Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:

Dean of Awang Had Salleh Graduate School of Arts and Sciences UUM College of Arts and Sciences

Universiti Utara Malaysia 06010 UUM Sintok

(5)

iii

Abstrak

Emosi adalah elemen psikologi komunikasi manusia yang mempengaruhi kelakuan logik. Kini, emosi manusia dikenalpasti dengan menganalisa isyarat otak melalui electroencephalogram (EEG), namun kebanyakkan kajian menunjukkan keputusan ketepatan yang lemah. Ini disebabkan oleh limitasi kaedah pengekstrakan ciri, pemilihan ciri dan pengelasan sedia ada untuk menangani isyarat EEG yang komplek, kacau dan tak pegun. Oleh itu, kajian ini bertujuan untuk membangunkan model komputasi yang lebih baik untuk model pengecaman emosi manusia berdasarkan isyarat pelbagai dimensi EEG. Kajian ini telah meningkatkan model pengecaman emosi dalam tiga bahagian. Bahagian pertama adalah pengekstrakan ciri dengan mencadangkan nearest-neighbour Grubbs based Discrete Wavelet Packet Transform (DWPT), di mana data asing dikesan oleh ujian Grubbs dan digantikan dengan isyarat jiran terdekatnya. Bahagian kedua melibatkan kaedah pemilihan ciri dengan membangunkan Improved Social Spider Optimisation (ISSO). Kaedah ini dipertingkatkan dengan memasukkan carian global Particle Swarm Optimization (PSO) ke arah penyelesaian yang lebih baik dalam tingkah laku pergerakan labah- labah. Bahagian ketiga berkenaan dengan pembangunan Eagle Strategy Social Spider Optimization (ESSO) untuk penataan parameter Least Square Vector Machine (LSSVM) untuk mengelakkan masalah optima tempatan. Dalam kajian ini, model yang dicadangkan diuji ke atas data EEG pra-diproses yang diperoleh daripada Database for Emotion Analysis Using Physiological (DEAP). Data ini dibahagikan kepada dua kumpulan mengikut subjek iaitu Data 1 dan Data 2. Keputusan menunjukkan bahawa model yang dicadangkan mengatasi model sedia ada. Valens maksimum dan ketepatan rangsangan berdasarkan Data 1 masing-masing adalah 76.39% dan 83.33%. Sementara itu, valens maksimum dan ketepatan rangsangan dalam Data 2 masing-masing adalah 72.22% dan 81.94%. Model pengecaman emosi berasaskan EEG yang dicadangkan dapat menyumbang kepada keperluan perkembangan Brain-Computer Interface (BCI) yang cerdas dan boleh memudahkan pembangunan aplikasi penjagaan kesihatan.

Kata Kunci: Pengecaman emosi, Electroencephalogram, Discrete Wavelet Packet Transform, Social Spider Optimisation, Least Square Support Vector Machine

(6)

iv

Abstract

Emotion is an element of human communication psychology that influences logical behaviour. Recently, human emotions are recognised by analysing signals of brain via electroencephalogram (EEG), however most studies show poor accuracy results. This is due to the limitations of existing feature extraction, feature selection and classification methods to address complex, chaotic and non-stationary EEG signals.

Therefore, this research aims to develop an improved computational model for human emotion recognition model based on EEG multi-dimensional signals. This research has enhanced emotion recognition model in three parts. First part is feature extraction by proposing nearest-neighbour Grubbs based Discrete Wavelet Packet Transform (DWPT), where outliers are detected by Grubbs test and replaced to its nearest neighbour signal. Second part involves the feature selection method through developing an Improved Social Spider Optimisation (ISSO). This method is enhanced by incorporating Particle Swarm Optimization (PSO) global search towards better solution of spider movement behaviour. Third part is concerned on the development of Eagle Strategy Social Spider Optimisation (ESSO) for tuning parameters of Least Square Support Vector Machine (LSSVM) to avoid local optima problem. In this research, the proposed model is tested on the pre-processed EEG data obtained from Database for Emotion Analysis Using Physiological (DEAP) data set. The data was split into two groups according to subjects which are Data 1 and Data 2. Results showed that the proposed model outperforms the existing model. The maximum valence and arousal accuracies based on Data 1 were 76.39% and 83.33% respectively.

While, the maximum valence and arousal accuracies in Data 2 were 72.22% and 81.94% respectively. The proposed EEG-based emotion recognition model contributes to the growing needs of an intelligent Brain-Computer Interface (BCI) and can facilitate the development of healthcare applications.

Keywords: Emotion recognition, Electroencephalogram, Discrete Wavelet Packet Transform, Social Spider Optimisation, Least Square Support Vector Machine

(7)

v

Acknowledgement

First and foremost, I thanks the mighty God for giving me this gift and simplifies my Ph.D journey.

I would like to dedicate this achievement to my father, who has strong will, which I have always acquired it by him, and for his constant support to me. As for my mother, as no words or statement are enough to express my thanks to her, I would shorten the letters and words, I only say thank you for your everlasting gifts to me, and for all prayers.

I am fully proud that I am one of graduated students of this ancient and giant University. I would like to express my sincere gratitude to my advisors Dr. Farzana Kabir Ahmad and Prof. Madya. Dr. Yuhanis Yusof for the continuous support of my Ph.D study, patience, motivation, and immense knowledge. Their guidance helped me over all the time of the research and writing of this thesis. I could not have imagined having a better advisors and mentors for my Ph.D study.

My sincere thanks also go to Prof. Dr. Ku Ruhana who is the head of the data science research lab, for supporting me and motivating me.

Last but not the least, I would like to thank my family; my brothers and sisters for supporting me spiritually throughout writing this thesis and during my Ph.D journey in general.

(8)

i

Table of Contents

Permission to Use ... ii

Abstrak ... iii

Abstract ... iv

Acknowledgement... v

Table of Contents ... i

List of Tables... v

List of Figures ... viii

CHAPTER ONE INTRODUCTION ... 1

1.1 Background ... 1

1.2 Research Motivation ... 3

1.3 Problem Statement ... 6

1.4 Research Questions ... 12

1.5 Research Objectives ... 13

1.6 Research Scope ... 13

1.7 Research Significance ... 14

1.8 Research Outline ... 14

CHAPTER TWO LITERATURE REVIEW ... 16

2.1 Introduction ... 16

2.2 Emotional States ... 16

2.3 Emotion Recognition Techniques ... 19

2.3.1 Vocal Recognition ... 19

2.3.2 Facial Expression Recognition ... 20

2.3.3 Heart Rate ... 20

2.3.4 Galvanic Skin Response ... 21

2.3.5 Electromyography ... 21

2.3.6 Electroencephalogram ... 22

2.4 Computational Model for Emotion Recognition Using EEG Signals ... 25

2.5 EEG Datasets ... 34

2.5.1 DEAP Database ... 36

2.5.1.1 Experimental Setting ... 36

2.5.1.2 Pre-processed DEAP Dataset ... 38

(9)

ii

2.5.2 Subjects ... 40

2.5.3 Emotion Stimulus ... 41

2.6 Pre-processing ... 42

2.7 Feature Extraction ... 42

2.7.1 Frequency Domain Methods ... 45

2.7.2 Time Domain Methods ... 46

2.7.3 Time-Frequency Domain Methods ... 48

2.7.3.1 Wavelet Transform... 50

2.7.3.2 Discrete Wavelet Transform ... 50

2.7.3.3 Discrete Wavelet Packet Transform... 52

2.7.3.3 Discrete Wavelet Packet Transform Related to EEG ... 56

2.8 Feature Selection in EEG Signals ... 61

2.8.1 Genetic Algorithm ... 68

2.8.2 Practical Swarm Optimisation ... 70

2.8.3 Artificial Bee Colony ... 71

2.8.4 Social Spider Optimisation ... 74

2.8.5 Swarm Intelligence Related to EEG Analysis ... 85

2.8.6 Eagle Strategy ... 90

2.9 Classification ... 92

2.9.1 Classifier ... 93

2.9.1.1 K-Nearest Neighbour ... 93

2.9.1.2 Artificial Neural Network ... 93

2.9.1.3 Support Vector Machines ... 94

2.9.2 Comparison of Commonly Used Classification Algorithms ... 96

2.9.3 Least Square Support Vector Machine ... 99

2.9.4 Swarm Intelligence in Tuning the LSSVM Classifier ... 105

2.10 Evaluation ... 108

2.11 Summary and Findings of the Literature Review ... 110

CHAPTER THREE METHODOLOGY ... 114

3.1 Introduction ... 114

3.2 Research Steps ... 115

3.3 Phase I: EEG Data Acquisition ... 116

3.3.1 Pre-determined Valence–Arousal Space and Channels ... 118

(10)

iii

3.3.2 Subjects, EEG Data, and Experiments... 120

3.4 Phase II: Feature Extraction ... 123

3.4.1 Nearest Neighbour Grubbs Discrete Wavelet Packet Transform ... 123

3.5 Phase III: Feature Selection ... 127

3.6 Phase IV: Classification: LSSVM Parameter Tuning ... 130

3.7 Phase V: Evaluation ... 133

3.7.1 T-test Evaluation ... 134

3.8 The Proposed Computational Model ... 137

3.9 Summary ... 137

CHAPTER FOUR FEATURE EXTRACTION ... 139

4.1 Introduction ... 139

4.2 The Proposed Feature Extraction Method ... 140

4.3 Experimental Results ... 146

4.3.1 T-test Results ... 156

4.4 Discussion ... 157

4.5 Summary ... 158

4.6 Shortcoming of the Grubbs-DWPT ... 159

CHAPTER FIVE FEATURE SELECTION ... 160

5.1 Introduction ... 160

5.2 The Proposed Feature Selection Method ... 161

5.3 Experimental Results ... 167

5.3.1 T-test Results ... 175

5.3.3 Diversity Analysis... 179

5.4 Discussion ... 183

5.5 Summary ... 184

5.6 The Shortcoming of the ISSO algorithm ... 184

CHAPTER SIX CLASSIFICATION ... 187

6.1 Introduction ... 187

6.2 The Proposed LSSVM Parameters Tuning Algorithm ... 189

6.3 Experimental Results ... 195

6.3.1 T-test Results ... 217

6.3.2 Diversity Results ... 220

6.4 Discussion ... 227

(11)

iv

CHAPTER SEVEN CONCLUSION ... 232

7.1 Introduction ... 232

7.2 Review of the Research Objectives and Achievements ... 233

7.2.1 The Enhanced EEG-based Emotion Recognition Model ... 235

7.3 The Research Findings and Their Implications ... 236

7.4 Limitations of the Research ... 239

7.4.1 The EEG Dataset’s Limitations and Implication ... 242

7.5 Recommendations and Future Work ... 243

REFERENCES ... 246

(12)

v

List of Tables

Table 2.1. Comparison between Discrete Space and Continuous Space. ... 18

Table 2.2. A Summary of The Emotion Recognition Techniques. ... 23

Table 2.3. Some EEG-based Emotion Recognition Studies. ... 27

Table 2.4. Some Information about the Five Effective EEG Databases. ... 34

Table 2.5. Contents of Each Subject File. ... 39

Table 2.6. A Description of Time Domain and Frequency Domain ... 43

Table 2.7. Some Common Fractal Dimension Methods. ... 47

Table 2.8. Some Commonly Used Time-Frequency Algorithms. ... 49

Table 2.9. Some Studies That Used Feature Selection Methods in EEG-Based Classification ... 64

Table 2.10. Description, Advantages, and Disadvantages of the Most Common Feature Selection Types ... 67

Table 2.11. Some Studies That Used the SSO Algorithm ... 83

Table 2.12. Some EEG-Based Studies That Used Swarm Intelligence Algorithms ... 88

Table 2.13. SVM Kernel Functions ... 95

Table 2.14. A Review of Some Commonly Used Classification Algorithms ... 97

Table 2.15. Prediction Technique Using LSSVM Optimized by Swarm-Based Algorithm. ... 106

Table 3.1. Research Strategy ... 114

Table 3.2. The labels of original DEAP dataset and predefined label. ... 119

Table 3.3. One Versus One Coding on the Taken Classes. ... 132

Table 4.1 . Extracted Frequency Bands Information ... 143

Table 4.2. Classifciation Results of Diffirents K-fold Number . ... 148

Table 4.3. Classification Results for Original DWPT and Grubbs-DWPT of Data 1 and Data2 Experiments ... 150

Table 4.4. The Confusion Matrix of Data 1 Experiment of Original DWPT ... 153

Table 4.5. The Confusion Matrix of Data 1 Experiment of Grubbs-DWPT ... 154

Table 4.6. The Confusion Matrix of Data 2 Experiment of Original DWPT ... 154

Table 4.7. The Confusion Matrix of Data 2 Experiment of NN-Grubb-DWPT ... 155

Table 4.8. T-test Statistical Results of Grubbs-DWPT vs. Original DWPT for Data 1 and Data 2 Experiments’ Results. ... 157

(13)

vi

Table 5.1. Parameter/Factors Setup for ISSO-FS ... 163

Table 5.2. Feature Selection Results Experiments for EEG Dataset of Data 1 and Data 2 at Population is 10. ... 170

Table 5.3. Feature Selection Results Experiments for EEG Dataset of Data 1 and Data 2 at Population is 20. ... 171

Table 5.4. Feature Selection Results Experiments for EEG Dataset of Data 1 and Data 2 at Population is 20. ... 172

Table 5.5. Feature Selection Results Experiments for EEG Dataset of Data 1 and Data 2 at Population is 40. ... 173

Table 5.6. Feature Selection Results Experiments for EEG Dataset of Data 1 and Data 2 at Population is 50. ... 174

Table 5.7. T-test Results for Data 1 and Data 2 Experiments. ... 175

Table 5.8. The Selected Features Vectoes of Data 1 Valence. ... 177

Table 5.9. The Selected Features Vectoes of Data 1 Arousal . ... 178

Table 5.10. The Selected Features Vectoes of Data 2 Valence. ... 178

Table 5.11. The Selected Features Vectoes of Data 1 Valence. ... 179

Table 6.1. Parameter/Factor Setup for ESSO-LSSVM ... 190

Table 6.2. The Classification Experiments Results by Different Classification Schemes in the Range Between 0.001 and 100 for EEG Dataset of Data 1 and Data 2 at Population is 10. ... 197

Table 6.3. The Classification Experiments Results by Different Classification Schemes in the Range Between 0.001 and 100 for EEG Dataset of Data 1 and Data 2 at Population is 20. ... 199

Table 6.4. The Classification Experiments Results by Different Classification Schemes in the Range Between 0.001 and 100 for EEG Dataset of Data 1 and Data 2 at Population is 30. ... 201

Table 6.5. The Classification Experiments Results by Different Classification Schemes in the Range Between 0.001 and 100 for EEG Dataset of Data 1 and Data 2 at Population is 40 ... 203

Table 6.6. The Classification Experiments Results by Different Classification Schemes in the Range Between 0.001 and 100 for EEG Dataset of Data 1 and Data 2 at Population is 50. ... 205

(14)

vii

Table 6.7. The Classification Experiments Results by Different Classification

Schemes in the Range Between 0.001 and 1000 for EEG Dataset of Data 1 and Data 2 at Population is 10. ... 207 Table 6.8. The Classification Experiments Results by Different Classification

Schemes in the Range Between 0.001 and 1000 for EEG Dataset of Data 1 and Data 2 at Population is 20. ... 209 Table 6.9. The Classification Experiments Results by Different Classification

Schemes in the Range Between 0.001 and 1000 for EEG Dataset of Data 1 and Data 2 at Population is 30. ... 211 Table 6.10. The Classification Experiments Results by Different Classification

Schemes in the Range Between 0.001 and 1000 for EEG Dataset of Data 1 and Data 2 at Population is 40. ... 213 Table 6.11. The Classification Experiments Results by Different Classification

Schemes in the Range Between 0.001 and 1000 for EEG Dataset of Data 1 and Data 2 at Population is 50. ... 215 Table 6.12. T-test Results for Data 1 and Data2 Experiments of Range (0.001-100).

... 218 Table 6.13. T-test Results for Data 1 and Data2 Experiments of Range (0.001-1000).

... 219

(15)

viii

List of Figures

Figure 2.1. Emotions placed on arousal–valence space coordinates

(Jirayucharoensak et al., 2014)... 18

Figure 2.2. Hemisphere (Rao et al., 2012) . ... 23

Figure 2.3. Emotion recognition approach using EEG signals (Jatupaiboon et al., 2013) . ... 25

Figure 2.4. Brainwaves with basic emotion labels, including delta, theta, alpha, beta, and gamma (brainwavemaster, 2014). ... 26

Figure 2.5. Self-assessment manikins (SAM) (Morris, 1995) . ... 36

Figure 2.6. Experiment protocol (Rached & Perkusich, 2013). ... 37

Figure 2.7. The 10-10 international system (Sepulveda, 2011). ... 37

Figure 2.8. Arousal-valence of four classes (Koelstra et al., 2012)... 38

Figure 2.9. The 40 channels of each subject ... 40

Figure 2.10. DWT tree ... 51

Figure 2.11. Decomposition of five-level EEG signals using DWPT ... 53

Figure 2.12. Two levels of DWPT decomposition (Wali et al., 2013). ... 55

Figure 2.13. The Pseudo-code of the original DWPT ... 57

Figure 2.14. Emotion recognition approach using EEG signals ... 63

Figure 2.15. Configuration of each special relation: (a) Vibci, (b) Vibbi, and (c) Vibfi ... 78

Figure 2.16. Representation of the data flow of the SSO algorithm... 80

Figure 2.17. The pseudo-code of the SSO algorithm (Cuevas et al., 2013). ... 82

Figure 2.18. ANN layers system ... 94

Figure 2.19. SVM architecture ... 96

Figure 3.1. Research Steps... 115

Figure 3.2. The EEG subject’s files Used in this Research . ... 117

Figure 3.3. The Stored EEG Data of Subject ‘s07’. ... 118

Figure 3.4. Classes of emotional states ... 120

Figure 3.5. Description of the Data. ... 120

Figure 3.6. Sample of the data belonging to subject number 7. ... 122

Figure 3.7. Replacement of the outlier signal point at index 312 based on Grubbs- DWPT ... 124

(16)

ix

Figure 3.8. The Extracted Features Space ... 125

Figure 3.9. An Example of the extracted features from Data1. ... 126

Figure 3.10. Objective Function. ……..………. 132

Figure 3.11. The approach of the proposed computational model. ... 137

Figure 4.1. Research steps (feature extraction phase). ... 139

Figure 4.2. The flow of feature extraction using NN-Grubbs-DWPT. ... 140

Figure 4.3. The Loading EEG data of ‘subject 7’... 141

Figure 4.4. An example of predefined label. ... 141

Figure 4.5. Five-level decomposition tree of DWPT algorithm ... 146

Figure 4.6. Comparison in terms of min, max, mean, and SD values for Data 1. ... 151

Figure 4.7. Comparison of precision, recall, F-score, and AUC values for Data 1. 151 Figure 4.8. Comparison of min, max, mean, and SD values for Data 2. ... 152

Figure 4.9. Comparison of precision, recall, F-score, and AUC values for Data 2. 152 Figure 4.10. Theta bands (4–6.5 Hz) of the original DWPT and NN-Grubbs-DWPT ... 156

Figure 5.1. Research steps (feature selection phase). ... 161

Figure 5.2. The results obtained by the different feature selection methods . ... 169

Figure 5.3. Selected features’ numbers in different optimizers. ... 177

Figure 5.4. Average distances of the population of Data1 experiment. ... 181

Figure 5.5. Average distances of the population of Data2 experiment. ... 182

Figure 5.6. Surface plots of the population distances over 20 run and 100 iterations. ... 186

Figure 6.1. Research steps (classification phase) ... 188

Figure 6.2. A simplifised form of the classification model. ... 189

Figure 6.3. ESSO-LSSVM classification scheme (parameters tuning). ... 195

Figure 6.4. The distances of the populations along with its classification accuracy, Data1. ... 223

Figure 6.5. The distances of the populations along with its classification accuracy, Data2. ... 224

Figure 6.6. The boxplots of the population distances of the ESSO, ISSO, SSO, ABC, and PSO algorithms, Data1. ... 225

Figure 6.7. The boxplots of the population distances of the ESSO, ISSO, SSO, ABC, and PSO algorithms, Data 2. ... 226

(17)

x

Figure 6.8. Surface plots of the population distances over 20 run and 100 iterations, Data1. ... 229 Figure 6.9. Surface plots of the population distances over 20 run and 100 iterations, Data2. ... 230

(18)

1

CHAPTER ONE INTRODUCTION

1.1 Background

Emotion states have great influences and play essential roles in human life, such as learning, decision-making, and communication. Human emotion recognition is commonly referred to as a pattern classification problem. Accurate classification results can only be accomplished through the determination of an ideal/optimal feature space with implementation of a classifier that closely models the actual classification problem based on the selected feature space (Al-Nafjan, Hosny, Al-Wabil, & Al- Ohali, 2017; Zhang, Jiang, & Dong, 2017; Ghosh Dastidar, 2007; Kim, Kim, Oh, &

Kim, 2013; Kumar et al., 2016; Valenza, Citi, Lanatá, Scilingo, & Barbieri, 2014).

Emotion can be assessed by analysing physiological signals (Al-Nafjan et al., 2017;

Granero et al., 2016; Kim et al., 2013; Taffese, 2017). Human emotion can be systematically described through mapping onto a corresponding two-dimensional valence–arousal emotion space in which valence is represented as a horizontal axis indicating positivity of emotion and arousal is represented as a vertical axis indicating emotional activation level (Russell, 1979; Thammasan, Moriyama, Fukui, & Numao, 2017). Physiological signals are divided into a couple of categories, for instance: (i) the peripheral nervous system (e.g., galvanic skin response (GSR), electromyography (EMG), and heart rate (HR)) and (ii) the central nervous system (i.e., electroencephalogram [EEG]) (Chanel, Kronegg, Grandjean, & Pun, 2006; Scherer, 2001; Girardi, Lanubile, & Novielli, 2017; Granero et al., 2016; Kim et al., 2013;

Luneski et al., 2010; Taffese, 2017). The interaction of neurons in the human brain creates rhythmic signals. These signals can be separated into different bands based on

(19)

246

REFERENCES

Åberg, M. C., & Wessberg, J. (2007). Evolutionary optimization of classifiers and features for single trial EEG discrimination. Biomedical engineering online, 6(1), 32.

Abhang, P., Rao, S., Gawali, B. W., & Rokade, P. (2011). Emotion recognition using speech and EEG signal–a review.

Abhang, P., Rao, S., Gawali, B. W., & Rokade, P. (2011). Emotion recognition using speech and EEG signal–a review.

Abhang, P., Rao, S., Gawali, B. W., & Rokade, P. (2011). Emotion recognition using speech and EEG signal–a review.

Abu-Mouti, F. S., & El-Hawary, M. E. (2012, March). Overview of Artificial Bee Colony (ABC) algorithm and its applications. In Systems Conference (SysCon), 2012 IEEE International (pp. 1-6). IEEE.

Acharya, U. R., Faust, O., Sree, S. V., Alvin, A. P. C., Krishnamurthi, G., Seabra, J. C., ... &

Suri, J. S. (2011, August). Atheromatic™: Symptomatic vs. asymptomatic classification of carotid ultrasound plaque using a combination of HOS, DWT &

texture. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 4489-4492). IEEE.

Ackermann, P., Kohlschein, C., Bitsch, J. Á., Wehrle, K., & Jeschke, S. (2016, September).

EEG-based automatic emotion recognition: Feature extraction, selection and

(20)

247

classification methods. In e-Health Networking, Applications and Services (Healthcom), 2016 IEEE 18th International Conference on (pp. 1-6). IEEE.

Adam, A., Shapiai, M. I., Mohd Tumari, M. Z., Mohamad, M. S., & Mubin, M. (2014).

Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization. The Scientific World Journal, 2014.

Adeli, E., Wu, G., Saghafi, B., An, L., Shi, F., & Shen, D. (2017). Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease.

Scientific reports, 7.

Adolphs, R. (2002). Recognizing emotion from facial expressions: psychological and neurological mechanisms. Behavioral and cognitive neuroscience reviews, 1(1), 21- 62.

Ahmad Nasrul, N., & Mohd Hanafi, M. S. (2009). Surface Electromyography signal processing and application: a review.

Ahmad, F. K., & Olakunle, O. W. Discrete Wavelet Packet Transform for Electroencephalogram-Based Emotion Recognition in the Valence-Arousal Space.

Akin, M. (2002). Comparison of wavelet transform and FFT methods in the analysis of EEG signals. Journal of medical systems, 26(3), 241-247.

Al-Nafjan, A., Hosny, M., Al-Ohali, Y., & Al-Wabil, A. (2017). Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review. Applied Sciences, 7(12), 1239.

(21)

248

Al-Nafjan, A., Hosny, M., Al-Ohali, Y., & Al-Wabil, A. (2017). Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review. Applied Sciences, 7(12), 1239.

Al-Nafjan, A., Hosny, M., Al-Wabil, A., & Al-Ohali, Y. (2017). Classification of Human Emotions from Electroencephalogram (EEG) Signal using Deep Neural Network.

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 8(9), 419-425.

Alotaiby, T., El-Samie, F. E. A., Alshebeili, S. A., & Ahmad, I. (2015). A review of channel selection algorithms for EEG signal processing. EURASIP Journal on Advances in Signal Processing, 2015(1), 66.

Alsolamy, M., & Fattouh, A. (2016, July). Emotion estimation from EEG signals during listening to Quran using PSD features. In Computer Science and Information Technology (CSIT), 2016 7th International Conference on (pp. 1-5). IEEE.

AlZoubi, O., Calvo, R. A., & Stevens, R. H. (2009). Classification of EEG for affect recognition: an adaptive approach. In AI 2009: Advances in Artificial Intelligence (pp.

52-61). Springer Berlin Heidelberg.

Amin, H. U., Mumtaz, W., Subhani, A. R., Saad, M. N. M., & Malik, A. S. (2017).

Classification of EEG signals based on pattern recognition approach. Frontiers in computational neuroscience, 11, 103.

Aminian, F., Aminian, M., Schettino, L., & Ameli, A. (2010). Electroencephalogram (EEG) signal classification using neural networks with wavelet packet analysis, principal component analysis and data normalization as preprocessors. Proceedings

(22)

249

of the Twenty-First MAICS 2010 Midwest Artificial Intelligence and Cognitive Science Conference.

Anderson, K., & McOwan, P. W. (2006). A real-time automated system for the recognition of human facial expressions. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36(1), 96-105.

Ang, J., Dhillon, R., Krupski, A., Shriberg, E., & Stolcke, A. (2002, September). Prosody- based automatic detection of annoyance and frustration in human-computer dialog. In INTERSPEECH.

Anh, V. H., Van, M. N., Ha, B. B., & Quyet, T. H. (2012, November). A real-time model based support vector machine for emotion recognition through EEG. In Control, Automation and Information Sciences (ICCAIS), 2012 International Conference on (pp. 191-196). IEEE.

Ansari Asl, K., Chanel, G., & Pun, T. (2007). A channel selection method for EEG classification in emotion assessment based on synchronization likelihood.

Arasomwan, M. A., & Adewumi, A. O. (2014). Improved Particle Swarm Optimization with a Collective Local Unimodal Search for Continuous Optimization Problems. The Scientific World Journal, 2014.

Askarzadeh, A. (2014). Bird mating optimizer: An optimization algorithm inspired by bird mating strategies. Communications in Nonlinear Science and Numerical Simulation, 19(4), 1213-1228.

(23)

250

Askarzadeh, A., & Rezazadeh, A. (2013). A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. International Journal of Energy Research, 37(10), 1196-1204.

Atkinson, J., & Campos, D. (2016). Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Systems with Applications, 47, 35- 41.

Atkinson, J., & Campos, D. (2016). Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Systems with Applications, 47, 35-41.Zhou, Y., Zhou, Y., Luo, Q., & Abdel-Basset, M. (2017).

A simplex method-based social spider optimization algorithm for clustering analysis. Engineering Applications of Artificial Intelligence, 64, 67-82.

Baesens, B., Viaene, S., Van Gestel, T., Suykens, J. A., Dedene, G., De Moor, B., &

Vanthienen, J. (2000). An empirical assessment of kernel type performance for least squares support vector machine classifiers. In Knowledge-Based Intelligent Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth International Conference on (Vol. 1, pp. 313-316). IEEE.

Bajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. Information Technology in Biomedicine, IEEE Transactions on, 16(6), 1135-1142.

Bajaj, V., & Pachori, R. B. (2013). Classification of human emotions based on multiwavelet transform of EEG signals. In Proceedings 2013 AASRI Conference on Intelligent Systems and Control (pp. 17-18).

(24)

251

Bajaj, V., & Pachori, R. B. (2014, May). Human Emotion Classification from EEG Signals Using Multiwavelet Transform. In Medical Biometrics (ICMB), 2014 International Conference on (pp. 125-130). IEEE.

Bajaj, V., & Pachori, R. B. (2015). Detection of Human Emotions Using Features Based on the Multiwavelet Transform of EEG Signals. In Brain-Computer Interfaces (pp. 215- 240). Springer International Publishing.

Bajaj, V., Krishna, A. H., Priyanka, K. Y. V. S., & Taran, S. (2018). Emotion classification using EEG signals based on tunable-Q wavelet transform. IET Science, Measurement

& Technology.

Bansal, J. C., Sharma, H., Jadon, S. S., & Clerc, M. (2014). Spider Monkey Optimization algorithm for numerical optimization. Memetic Computing, 6(1), 31-47.

Barrett, L. F. (1998). Discrete emotions or dimensions? The role of valence focus and arousal focus. Cognition & Emotion, 12(4), 579-599.

Barthelemy, P., Bertolotti, J., & Wiersma, D. S. (2008). A Lévy flight for light. Nature, 453(7194), 495-498.

Basmajian, J. V., & De Luca, C. J. Muscles alive: their functions revealed by electromyography, 1985. Williams and Wilkins, Baltimore, 187-288.

Baumgartner, T., Esslen, M., & Jäncke, L. (2006). From emotion perception to emotion experience: Emotions evoked by pictures and classical music. International Journal of Psychophysiology, 60(1), 34-43.

(25)

252

Behera, N. K. S., Routray, A. R., Nayak, J., & Behera, H. S. (2015). Bird Mating Optimization Based Multilayer Perceptron for Diseases Classification. In Computational Intelligence in Data Mining-Volume 3 (pp. 305-315). Springer India.

Bellman, R.E. Adaptive control processes Princeton, NJ: Princeton UniversityPress; 1961.

Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures (Vol. 729). John Wiley & Sons.

Bhatti, A. M., Majid, M., Anwar, S. M., & Khan, B. (2016). Human emotion recognition and analysis in response to audio music using brain signals. Computers in Human Behavior, 65, 267-275.

Bhowmik, S., Jelfs, B., Arjunan, S. P., & Kumar, D. K. (2017, December). Outlier removal in facial surface electromyography through Hampel filtering technique. In Life Sciences Conference (LSC), 2017 IEEE (pp. 258-261). IEEE.

Bilgin, S., Çolak, O. H., Koklukaya, E., & Arı, N. (2008). Efficient solution for frequency band decomposition problem using wavelet packet in HRV. Digital Signal Processing, 18(6), 892-899.

Binitha, S., & Sathya, S. S. (2012). A survey of bio inspired optimization algorithms.

International Journal of Soft Computing and Engineering, 2(2), 137-151.

biopac system, Inc. (2014). Emotional State Recognition via Physiological Measurement and Processing. url: http://www.biopac.com/Manuals/app_pdf/app276.pdf, 2014.

Biosemi Active 2. Available: http://www.biosemi.com/products.htm . Biosemi. Available: http://www.biosemi.com .

(26)

253

Blankertz, B., Lemm, S., Treder, M., Haufe, S., & Müller, K. R. (2011). Single-trial analysis and classification of ERP components—a tutorial. NeuroImage, 56(2), 814-825.

Blinowska, K. J., Durka, P. J., & Zygierewicz, J. (2004). Time-Frequency Analysis of Brain Electrical Activity-Adaptive Approximations. Methods of information in medicine, 43(1), 70-73.

Boolchandani, D., & Sahula, V. (2011). Exploring efficient kernel functions for support vector machine based feasibility models for analog circuits. International Journal on Design, Analysis and Tools for Circuits and Systems, 1-8.

Bonyadi, M. R., & Michalewicz, Z. (2017). Particle swarm optimization for single objective continuous space problems: a review.

Bos, D. O. (2006). EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli, 1-17.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). ACM.

Bradley, M. M., & Lang, P. J. (2007). The International Affective Digitized Sounds (; IADS- 2): Affective ratings of sounds and instruction manual. University of Florida, Gainesville, FL, Tech. Rep. B-3.

Brainwavemaster. (2014). What are Brainwaves?. http://www.brainwavemaster.com/what- are-brainwaves/.

(27)

254

Brown, C. T., Liebovitch, L. S., & Glendon, R. (2007). Lévy flights in Dobe Ju/’hoansi foraging patterns. Human Ecology, 35(1), 129-138.

Brown, L., Grundlehner, B., & Penders, J. (2011, August). Towards wireless emotional valence detection from EEG. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 2188-2191). IEEE.

Bursa, M., & Lhotska, L. (2007, August). Modified ant colony clustering method in long-term electrocardiogram processing. In Engineering in Medicine and Biology Society, 2007.

EMBS 2007. 29th Annual International Conference of the IEEE (pp. 3249-3252).

IEEE.

Bursa, M., & Lhotska, L. (2008). Ant colony cooperative strategy in electrocardiogram and electroencephalogram data clustering. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) (pp. 323-333). Springer Berlin Heidelberg.

Byun, S. W., Lee, S. P., & Han, H. S. (2017, August). Feature selection and comparison for the emotion recognition according to music listening. In Robotics and Automation Sciences (ICRAS), 2017 International Conference on (pp. 172-176). IEEE.

Candelon, B., & Metiu, N. (2013). A distribution-free test for outliers.

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers &

Electrical Engineering, 40(1), 16-28.

Chanel, G., Ansari-Asl, K., & Pun, T. (2007, October). Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on (pp. 2662-2667). IEEE.

(28)

255

Chanel, G., Kierkels, J. J., Soleymani, M., & Pun, T. (2009). Short-term emotion assessment in a recall paradigm. International Journal of Human-Computer Studies, 67(8), 607- 627.

Chanel, G., Kronegg, J., Grandjean, D., & Pun, T. (2006). Emotion assessment: Arousal evaluation using EEG’s and peripheral physiological signals. Multimedia content representation, classification and security, 530-537.

Chanel, G., Rebetez, C., Bétrancourt, M., & Pun, T. (2011). Emotion assessment from physiological signals for adaptation of game difficulty. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 41(6), 1052-1063.

Charbonneau, P. (2002). An introduction to genetic algorithms for numerical optimization.

CAR Technical Note, NCAR.

Chen, H., & Zhu, Y. (2008). Optimization based on symbiotic multi-species coevolution.

Applied Mathematics and Computation, 205(1), 47-60.

Chen, X., Wang, J., Sun, D., & Liang, J. (2008, October). Time series forecasting based on novel support vector machine using artificial fish swarm algorithm. In Natural Computation, 2008. ICNC'08. Fourth International Conference on (Vol. 2, pp. 206- 211). IEEE.

Cheng, G., Guo, R., & Wu, W. (2010, January). Petroleum lithology discrimination based on PSO-LSSVM classification model. In Computer Modeling and Simulation, 2010.

ICCMS'10. Second International Conference on (Vol. 4, pp. 365-368). IEEE.

Chu, S. C., Tsai, P. W., & Pan, J. S. (2006). Cat swarm optimization. In PRICAI 2006: Trends in Artificial Intelligence (pp. 854-858). Springer Berlin Heidelberg.

(29)

256

Cocroft, R. B. (2011). The public world of insect vibrational communication. Molecular ecology, 20(10), 2041-2043.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press. url:

http://www.sciencedirect.com/science/book/9780121790608.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines.

Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374-6384.

Cuevas, E., Cortés, M. A. D., & Navarro, D. A. O. (2016). A swarm global optimization algorithm inspired in the behavior of the social-spider. In Advances of Evolutionary Computation: Methods and Operators (pp. 9-33). Springer, Cham.

Cvetkovic, D., Übeyli, E. D., & Cosic, I. (2008). Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: A pilot study.

Digital Signal Processing, 18(5), 861-874.

Dasgupta . Artificial immune systems and their applications. Vol. 1. Berlin: Springer, 1999.

Davidson, R. J., Jackson, D. C., & Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: perspectives from affective neuroscience. Psychological bulletin, 126(6), 890.

De Brabanter, J., Pelckmans, K., Suykens, J. A., & Vandewalle, J. (2002). Robust cross- validation score function for non-linear function estimation. In Artificial Neural Networks—ICANN 2002 (pp. 713-719). Springer Berlin Heidelberg.

(30)

257

De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., ...

& Suykens, J. A. (2010). LS-SVMlab Toolbox User's Guide: version 1.7. Katholieke Universiteit Leuven.

Dhariya, S. (2013). Human Emotion Detection System Using EEG Signals. International KIET Journal of Software and Communication Technologies (IKJSCT), 1(1), 25-30.

Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of bioinformatics and computational biology, 3(02), 185-205.

Dixon, W. J. (1950). Analysis of extreme values. The Annals of Mathematical Statistics, 21(4), 488-506.

Djemili, R., Bourouba, H., & Korba, A. (2009). A combination approach of Gaussian mixture models and support vector machines for speaker identification. International Arab Journal of Information Technology (IAJIT), 6(5).

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 26(1), 29-41.

Dries, E. J., & Peterson, G. L. (2008, July). Scaling ant colony optimization with hierarchical reinforcement learning partitioning. In Proceedings of the 10th annual conference on Genetic and evolutionary computation (pp. 25-32). ACM.

Duan, R. N., Wang, X. W., & Lu, B. L. (2012, January). EEG-Based emotion recognition in listening music by using support vector machine and linear dynamic system. In Neural Information Processing (pp. 468-475). Springer Berlin Heidelberg.

(31)

258

Durka, P. (2007). Matching pursuit and unification in EEG analysis. Artech House.

Easycap. (2014). http://www.easycap.de/easycap/e/downloads/info_10_20.htm.

Eberhart, R. C., & Kennedy, J. (1995, October). A new optimizer using particle Swarm theory.

In Proceedings of the sixth international symposium on micro machine and human science (Vol. 1, pp. 39-43).

Emotion. wikipedia.com. URL: http://en.wikipedia.org/wiki/Emotion.

Emotiv. Available: http://www.emotiv.com .

Ertekin, S., Bottou, L., & Giles, C. L. Fast Classification with Online Support Vector Machines.

ESense (2013). skin respone. url:

http://www.mindfield.de/pdf/eSense%20Skin%20Response%20Manual%20english.

pdf.

ESense,”skin. respone”, url:

http://www.mindfield.de/pdf/eSense%20Skin%20Response%20Manual%20english.

pdf, 2013.

Espinoza, M., Suykens, J. A., & Moor, B. D. (2006). Fixed-size least squares support vector machines: A large scale application in electrical load forecasting. Computational Management Science, 3(2), 113-129.

Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management, 129(3), 210-225.

(32)

259

Fabiani, M., Gratton, G., & Coles, M. (2000). Event-related brain potentials: methods, theory.

Handbook of psychophysiology, 53-84.

Fan, X., & Zuo, M. J. (2006). Gearbox fault detection using Hilbert and wavelet packet transform. Mechanical systems and Signal processing, 20(4), 966-982.

Fang, X., & Bai, T. (2009, May). Share price prediction using wavelet transform and ant colony algorithm for parameters optimization in SVM. In Intelligent Systems, 2009.

GCIS'09. WRI Global Congress on (Vol. 3, pp. 288-292). IEEE.

Fattahi, S. Optimal congestion management using The Social Spider Optimization algorithm.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861- 874.

Feoktistov, V., & Janaqi, S. (2004). Hybridization of differential evolution with least-square support vector machines. BENELEARN 2004, 26-31.

Fink, G. (2000). Encyclopedia of Stress, Three-Volume Set (Vol. 1). Academic Press.page (25-27).

Frantzidis, C. A., Bratsas, C., Papadelis, C. L., Konstantinidis, E., Pappas, C., & Bamidis, P.

D. (2010). Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. Information Technology in Biomedicine, IEEE Transactions on, 14(3), 589-597.

Frantzidis, C. A., Bratsas, C., Papadelis, C. L., Konstantinidis, E., Pappas, C., & Bamidis, P. D. (2010). Toward emotion aware computing: an integrated approach using

(33)

260

multichannel neurophysiological recordings and affective visual stimuli. IEEE Transactions on Information Technology in Biomedicine, 14(3), 589-597.

Frédéric, A., Nizar, K., Khaled, B. K., Hedi, B. M., Laurent, B., & Mohamed, D. (2006).

Supervised neuronal approaches for EEG signal classification: experimental studies.

In The 10th IASTED International Conference on Artificial Intelligence and Soft Computing–ASC, Aug (Vol. 29).

Frey, J., Mühl, C., Lotte, F., & Hachet, M. (2013). Review of the use of electroencephalography as an evaluation method for human-computer interaction.

arXiv preprint arXiv:1311.2222.

Fu, H., Liu, S., & Sun, F. (2010, August). Ship motion prediction based on AGA-LSSVM. In Mechatronics and Automation (ICMA), 2010 International Conference on (pp. 202- 206). IEEE.

Fukunaga, K. (2013). Introduction to statistical pattern recognition. Academic press.

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm.

Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845.

Gao, Y., Lee, H. J., & Mehmood, R. M. (2015, June). Deep learninig of EEG signals for emotion recognition. In Multimedia & Expo Workshops (ICMEW), 2015 IEEE International Conference on (pp. 1-5). IEEE.

Garrett, D., Peterson, D. A., Anderson, C. W., & Thaut, M. H. (2003). Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 11(2), 141-144.

(34)

261

Gerdle, B., Karlsson, S., Day, S., & Djupsjöbacka, M. (1999). Acquisition, processing and analysis of the surface electromyogram. In Modern techniques in neuroscience research (pp. 705-755). Springer Berlin Heidelberg.

Gerla, V., Bursa, M., Lhotska, L., Kordik, P., Paul, K., & Krajca, V. Inductive Modeling in Newborn Sleep Stage Recognition. In IWIM 2007-International Workshop on Inductive Modelling (pp. 312-317).

Gertsbakh, I., & Gertsbakh, I. (2003). Measurement theory for engineers. Berlin, Germany:

Springer.

Ghosh Dastidar, S. (2007). Models of EEG data mining and classification in temporal lobe epilepsy: Wavelet-chaos-neural network methodology and spiking neural networks (Doctoral dissertation, The Ohio State University).

Girardi, D., Lanubile, F., & Novielli, N. (2017). Emotion Detection Using Noninvasive Low Cost Sensors. arXiv preprint arXiv:1708.06664.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Gonzalez, A., Nambu, I., Hokari, H., & Wada, Y. (2014). EEG channel selection using particle swarm optimization for the classification of auditory event-related potentials.

The Scientific World Journal, 2014.

Gouizi, K., Maaoui, C., & Reguig, F. B. (2014, November). Negative emotion detection using EMG signal. In Control, Decision and Information Technologies (CoDIT), 2014 International Conference on (pp. 690-695). IEEE.

(35)

262

Goutte, C., & Gaussier, E. (2005, March). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European Conference on Information Retrieval (pp. 345-359). Springer, Berlin, Heidelberg.

Gowri ,M., Raj, C. P. (2017). A Survey on EEG Feature Extraction and Feature Classification methods in Brain Computer Interface, International Journal of Advanced Research in Computer and Communication Engineering,(2017).

Granero, A. C., Fuentes-Hurtado, F., Ornedo, V. N., Provinciale, J. G., Ausín, J. M., & Raya, M. A. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in computational neuroscience, 10.

Gratkowski, M., Haueisen, J., Arendt-Nielsen, L., Chen, A. C., & Zanow, F. (2008).

Decomposition of biomedical signals in spatial and time-frequency modes. Methods Inf Med, 47(1), 26-37.

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples.

Technometrics, 11(1), 1-21.

Guo, X. C., Liang, Y. C., Wu, C. G., & Wang, C. Y. (2006, January). PSO-based hyper- parameters selection for LSSVM classifiers. In Neural Information Processing (pp.

1138-1147). Springer Berlin Heidelberg.

Guo, Y., Li, X., Bai, G., & Ma, J. (2012, January). Time series prediction method based on LS-SVR with modified gaussian RBF. In Neural Information Processing (pp. 9-17).

Springer Berlin Heidelberg.

(36)

263

Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2012). Toward an EEG-based recognition of music liking using time-frequency analysis. Biomedical Engineering, IEEE Transactions on, 59(12), 3498-3510.

Hagelbäck, J., Sohaib, A. T., Qureshi, S., Hilborn, O., & Jercic, P. (2013). Evaluating classifiers for Emotion Recognition using EEG. In HCI International.

Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: an integrative review. Developmental neuropsychology, 35(2), 129-155.

Hall, M. A., & Smith, L. A. (1999, May). Feature Selection for Machine Learning: Comparing a Correlation-Based Filter Approach to the Wrapper. In FLAIRS conference (Vol.

1999, pp. 235-239).

Hamad, A., Houssein, E. H., Hassanien, A. E., & Fahmy, A. A. (2016, December). Feature extraction of epilepsy EEG using discrete wavelet transform. In Computer Engineering Conference (ICENCO), 2016 12th International (pp. 190-195). IEEE.

Hamann, S. (2012). Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends in cognitive sciences, 16(9), 458-466.

Hampel, F. R. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics, 1887-1896.

Hawkins D. M. Identification of Outliers. Biometrical, Journal, 29(2):198–198, 1980.

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.

(37)

264

He, S., Wu, Q. H., & Saunders, J. R. (2006, July). A novel group search optimizer inspired by animal behavioural ecology. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (pp. 1272-1278). IEEE.

He, X., Liu, C., Dong, H., Pan, J., & Yan, Q. (2014). Particle Swarm Optimization-based Augmented Lagrangian Algorithm for Constrained Optimization Problems. Journal of Software Engineering, 8, 169-183.

Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory.

Physica D: Nonlinear Phenomena, 31(2), 277-283.

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalography and clinical neurophysiology, 29(3), 306-310.

Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial intelligence review, 22(2), 85-126.

Horlings, R., Datcu, D., & Rothkrantz, L. J. (2008, June). Emotion recognition using brain activity. In Proceedings of the 9th international conference on computer systems and technologies and workshop for PhD students in computing (p. 6). ACM.

Hosseini, S. A. (2012). Classification of Brain Activity in Emotional States Using HOS Analysis. International Journal of Image, Graphics and Signal Processing (IJIGSP), 4(1), 21.

Hosseini, S. A., Khalilzadeh, M. A., Naghibi-Sistani, M. B., & Niazmand, V. (2010, July).

Higher order spectra analysis of EEG signals in emotional stress states. In Information Technology and Computer Science (ITCS), 2010 Second International Conference on (pp. 60-63). IEEE.

(38)

265

Hou, L., Yang, Q., & An, J. (2009, June). An improved LSSVM regression algorithm. In Computational Intelligence and Natural Computing, 2009. CINC'09. International Conference on (Vol. 2, pp. 138-140). IEEE.

Hu, L., Liang, M., Mouraux, A., Wise, R. G., Hu, Y., & Iannetti, G. D. (2011). Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. Journal of neurophysiology, 106(6), 3216-3229.

Huang, C. L., & Wang, C. J. (2006). A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with applications, 31(2), 231-240

Iscan, H., & Gunduz, M. (2014). Parameter Analysis on Fruit Fly Optimization Algorithm.

Journal of Computer and Communications, 2(04), 137.

Jalilifard, A., Pizzolato, E. B., & Islam, M. K. (2016, August). Emotion classification using single-channel scalp-EEG recording. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (pp. 845- 849). IEEE.

James, W. (1884). II.—What is an emotion?. Mind, (34), 188-205.

Jatupaiboon, N., Pan-ngum, S., & Israsena, P. (2013). Real-time EEG-based happiness detection system. The Scientific World Journal, 2013.

Jenke, R., Peer, A., & Buss, M. (2014). Feature extraction and selection for emotion recognition from EEG. IEEE Transactions on Affective Computing, 5(3), 327-339.

(39)

266

Jensen, A., & la Cour-Harbo, A. (2001). Ripples in mathematics: the discrete wavelet transform. springer.

Jiang, B. T., & Zhao, F. Y. (2013). Particle swarm optimization-based least squares support vector regression for critical heat flux prediction. Annals of Nuclear Energy, 53, 69-81.

Jiang, S., Pang, G., Wu, M., & Kuang, L. (2012). An improved K-nearest-neighbor algorithm for text categorization. Expert Systems with Applications, 39(1), 1503-1509.

Jiang, Y., Metz, C. E., & Nishikawa, R. M. (1996). A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology, 201(3), 745-750.

Jirayucharoensak, S., Pan-Ngum, S., & Israsena, P. (2014). EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation. The Scientific World Journal, 2014.

JO, J., LEE, Y., & SHIN, H. S. Real-time Analysis of Heart Rate Variability for a Mobile Human Emotion Recognition System.

Junghöfer, M., & Peyk, P. (2004). Analyzing electrical activity and magnetic fields in the brain. Matlab News & Notes, 2(04), 14-15.

Jyoti Rani & Kanwal Garg. (2014). Emotion Detection Using Facial Expressions -A Review.

Kamruzzaman, J., Sarker, R. A., & Ahmad, I. (2003, November). SVM based models for predicting foreign currency exchange rates. In Data Mining, 2003. ICDM 2003.

Third IEEE International Conference on (pp. 557-560). IEEE.

(40)

267

Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. K. (2005). Entropies for detection of epilepsy in EEG. Computer methods and programs in biomedicine, 80(3), 187-194.

Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm.

Applied Mathematics and Computation, 214(1), 108-132.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459-471.

Karim, S. A. A., Ismail, M. T., Hasan, M. K., Sulaiman, J., & Muthuvalu, M. S. (2015, May). Electroencephalography data analysis by using discrete wavelet packet transform. In AIP Conference Proceedings (Vol. 1660, No. 1, p. 070019). AIP Publishing.

Kennedy, J., Kennedy, J. F., & Eberhart, R. C. (2001). Swarm intelligence. Morgan Kaufmann.

Khalili, Z., & Moradi, M. H. (2008, December). Emotion detection using brain and peripheral signals. In Biomedical Engineering Conference, 2008. CIBEC 2008. Cairo International (pp. 1-4). IEEE.

Khalili, Z., & Moradi, M. H. (2009, June). Emotion recognition system using brain and peripheral signals: using correlation dimension to improve the results of EEG. In Neural Networks, 2009. IJCNN 2009. International Joint Conference on (pp. 1571- 1575). IEEE.

(41)

268

Khasnobish, A., Bhattacharyya, S., Konar, A., & Tibarewala, D. N. (2010). K-Nearest neighbor classification of left-right limb movement using EEG data. In oral presentation in International conference on Biomedical Engineering and assistive technologies, NIT Jalandhar.

Khosrowabadi, R., & Wahab bin Abdul Rahman, A. (2010, December). Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. In Information and Communication Technology for the Muslim World (ICT4M), 2010 International Conference on (pp. E102-E107). IEEE.

Khosrowabadi, R., Quek, H. C., Wahab, A., & Ang, K. K. (2010, August). EEG-based emotion recognition using self-organizing map for boundary detection. In Pattern Recognition (ICPR), 2010 20th International Conference on (pp. 4242-4245). IEEE.

Khushaba, R. N., AlSukker, A., Al-Ani, A., & Al-Jumaily, A. (2008, March). Intelligent artificial ants based feature extraction from wavelet packet coefficients for biomedical signal classification. In Communications, Control and Signal Processing, 2008.

ISCCSP 2008. 3rd International Symposium on (pp. 1366-1371). IEEE.

Kim, M. K., Kim, M., Oh, E., & Kim, S. P. (2013). A review on the computational methods for emotional state estimation from the human EEG. Computational and mathematical methods in medicine, 2013.

Kinsner, W., & Grieder, W. (1995, July). Fractal amplification of signal feature using variance fractal dimension. In 10th International Conference on Mathematical and Computer Modelling Record. ICMCM'95.

(42)

269

Kirchner, A. (2018). Using Support Vector Machines for Survey Research (Doctoral dissertation, University of Rochester).

Klein, C. E., Segundo, E. H., Mariani, V. C., & Coelho, L. D. S. (2016). Modified social- spider optimization algorithm applied to electromagnetic optimization. IEEE Transactions on Magnetics, 52(3), 1-4.

Kleinginna Jr, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and emotion, 5(4), 345-379.

Ko, K. E., Yang, H. C., & Sim, K. B. (2009). Emotion recognition using EEG signals with relative power values and Bayesian network. International Journal of Control, Automation and Systems, 7(5), 865-870.

Kociołek, M., Materka, A., Strzelecki, M., & Szczypiński, P. (2001, September). Discrete wavelet transform–derived features for digital image texture analysis. In Proc. of Interational Conference on Signals and Electronic Systems (pp. 163-168).

Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., ... & Patras, I.

(2012). Deap: A database for emotion analysis; using physiological signals. Affective Computing, IEEE Transactions on, 3(1), 18-31.

Koelstra, S., Yazdani, A., Soleymani, M., Mühl, C., Lee, J. S., Nijholt, A., ... & Patras, I.

(2010). Single trial classification of EEG and peripheral physiological signals for recognition of emotions induced by music videos. In Brain informatics (pp. 89-100).

Springer Berlin Heidelberg.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1-2), 273-324.

(43)

270

Kołodziej, M., Majkowski, A., & Rak, R. J. (2011). A new method of EEG classification for BCI with feature extraction based on higher order statistics of wavelet components and selection with genetic algorithms. In Adaptive and Natural Computing Algorithms (pp. 280-289). Springer Berlin Heidelberg.

Konstantinidis, E. I., Frantzidis, C. A., Pappas, C., & Bamidis, P. D. (2012). Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by Graphic Processor Units. Computer methods and programs in biomedicine, 107(1), 16-27.

Krishnanand, K. N., & Ghose, D. (2009). Glowworm Swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93-119.

Kroupi, E., Yazdani, A., & Ebrahimi, T. (2011). EEG correlates of different emotional states elicited during watching music videos. In Affective Computing and Intelligent Interaction (pp. 457-466). Springer Berlin Heidelberg.

Kumar, J. (2016). Affective Modelling of Users in HCI Using EEG. Procedia Computer Science, 84, 107-114.

Kumar, N., Khaund, K., & Hazarika, S. M. (2016). Bispectral analysis of EEG for emotion recognition. Procedia Computer Science, 84, 31-35.

Kumar, S., Sharma, V. K., & Kumari, R. (2014). An Improved Memetic Search in Artificial Bee Colony Algorithm. International Journal of Computer Science and Information Technology (0975–9646), 5(2), 1237-1247.

(44)

271

Lai, L., & Liu, J. (2014). Support Vector Machine and Least Square Support Vector Machine Stock Forecasting Models.

Lakany, H., & Conway, B. A. (2007). Understanding intention of movement from electroencephalograms. Expert Systems, 24(5), 295-304.

Lakshmi, R. M., Prasad, V. T., & Prakash, C. V. (2014). Survey on EEG Signal Processing Methods. International Journal of Advanced Research in Computer Science and Software Engineering, 4(1).

Lang, P. J. (1995). The emotion probe: Studies of motivation and attention. American psychologist, 50(5), 372.

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. NIMH, Center for the Study of Emotion & Attention.

Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2008). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Technical report A-8.

url: http://csea.phhp.ufl.edu/Media.html.

Last, M. (2002). Online classification of nonstationary data streams. Intelligent Data Analysis, 6(2), 129-147.

Lee, Y. Y., & Hsieh, S. (2014). Classifying different emotional states by means of EEG- based functional connectivity patterns. PloS one, 9(4), e95415.

(45)

272

Levenson, R. W. (1988). Emotion and the autonomic nervous system: A prospectus for research on autonomic specificity. Social psychophysiology and emotion: Theory and clinical applications, 17-42.

Li, B., Yu, S., & Lu, Q. (2003). An improved k-nearest neighbor algorithm for text categorization. arXiv preprint cs/0306099.

Li, M., & Lu, B. L. (2009, September). Emotion classification based on gamma-band EEG.

In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE (pp. 1223-1226). IEEE.

Li, T. S. (2006). Feature selection for classification by using a GA-based neural network approach. Journal of the Chinese Institute of Industrial Engineers, 23(1), 55-64.

Li, Y., Huang, J., Zhou, H., & Zhong, N. (2017). Human Emotion Recognition with Electroencephalographic Multidimensional Features by Hybrid Deep Neural Networks. Applied Sciences, 7(10), 1060.

Liao, R., Zheng, H., Grzybowski, S., & Yang, L. (2011). Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers. Electric Power Systems Research, 81(12), 2074- 2080.

Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T. L., Jeng, S. K., Duann, J. R., & Chen, J. H. (2010).

EEG-based emotion recognition in music listening. Biomedical Engineering, IEEE Transactions on, 57(7), 1798-1806.

Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2009, April). EEG-based emotion recognition in music listening: A comparison of schemes for multiclass

(46)

273

support vector machine. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on (pp. 489-492). IEEE.

Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2008, October). Support vector machine for EEG signal classification during listening to emotional music. In Multimedia Signal Processing, 2008 IEEE 10th Workshop on (pp. 127-130). IEEE.

Liu, B., Wang, M., Yu, L., Liu, Z., & Yu, H. (2006, January). Study of Feature Classification Methods in BCI Based on Neural Networks. In Engineering in Medicine and Biology Society, 2005. IEEEEMBS 2005. 27th Annual International Conference of the (pp.

2932-2935). IEEE.

Liu, C., Wang, W., Zhao, Q., Shen, X., & Konan, M. (2017). A new feature selection method based on a validity index of feature subset. Pattern Recognition Letters, 92, 1-8.

Liu, P., & Yao, J. (2009, November). Application of least square support vector machine based on particle swarm optimization to chaotic time series prediction. In Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE International Conference on (Vol. 4, pp. 458-462). IEEE.

Liu, Y. H., Wu, C. T., Cheng, W. T., Hsiao, Y. T., Chen, P. M., & Teng, J. T. (2014). Emotion Recognition from Single-Trial EEG Based on Kernel Fisher’s Emotion Pattern and Imbalanced Quasiconformal Kernel Support Vector Machine. Sensors, 14(8), 13361- 13388.

(47)

274

Liu, Y., & Qin, G. (2014). Reliability Redundancy Optimization Algorithm based on Eagle Strategy and PSO. International Journal of Multimedia and Ubiquitous Engineering, 9(12), 375-382.

Liu, Y., & Sourina, O. (2013, October). EEG databases for emotion recognition. In Cyberworlds (CW), 2013 International Conference on (pp. 302-309). IEEE.

Liu, Y., & Sourina, O. (2014). Real-Time Subject-Dependent EEG-Based Emotion Recognition Algorithm. In Transactions on Computational Science XXIII (pp. 199- 223). Springer Berlin Heidelberg.

Liu, Y., Sourina, O., & Nguyen, M. K. (2010, October). Real-time EEG-based human emotion recognition and visualization. In Cyberworlds (CW), 2010 International Conference on (pp. 262-269). IEEE.

Liu, Y., Sourina, O., & Nguyen, M. K. (2011). Real-time EEG-based emotion recognition and its applications. In Transactions on computational science XII (pp. 256-277). Springer Berlin Heidelberg.

Looney, D., Kidmose, P., & Mandic, D. P. (2014). Ear-EEG: user-centered and wearable BCI. Brain-Computer Interface Research. Berlin: Springer, 41-50.

Lotte, F. (2008). Study of electroencephalographic signal processing and classification techniques towards the use of Brain-computer interfaces in virtual reality applications (Doctoral dissertation, INSA de Rennes).

Luck, S. J. (2005). Averaging, Artifact Rejection, and Artifact Correction. An Introduction to the Event-Related Potential Technique. The MIT Press, Cambridge, MA, 131- 174.

Rujukan

DOKUMEN BERKAITAN

In this project, a face recognition that can classify gender was built along with at least 4 of the classification method, the k-NN, logistic regression, support vector machine

In recent years, a new method for vibration signal processing, combining Hilbert transform and wavelet packet appeared, and has become an effective method to extract

“neutral” data while the image with peak expression is used as the data set for the emotion. The FER system developed is based on CNN. TensorFlow, an open

Therefore, to prove the high ability of the wavelet transform, Discrete wavelet transform (DWT) by using Daubechies function and Fast Fourier transform (FFT) are used to capture

The signals are successfully detected at 0.028Hz after processed using discrete wavelet analysis for de-noising and continuous wavelet transform for signal detection.. Keywords:

The advantages of using the Discrete Wavelet Transform (DWT) over the Discrete Cosine Transform (DCT) lies in the fact that the DWT projects high details of

Figure 3.7 Deep Feedforward Neural Network Configuration 33 Figure 3.8 Emotion Recognition Results for Clean Dataset without VAD 34 Figure 3.9 Emotion Recognition Results for

SVM has been broadly used in image classification of medical imaging such as mammogram images for breast cancer detection due to its higher classification precision, higher