Hakcipta © tesis ini adalah milik pengarang dan/atau pemilik hakcipta lain. Salinan boleh dimuat turun untuk kegunaan penyelidikan bukan komersil ataupun pembelajaran individu tanpa kebenaran terlebih dahulu ataupun caj. Tesis ini tidak boleh dihasilkan semula ataupun dipetik secara menyeluruh tanpa memperolehi kebenaran bertulis daripada pemilik hakcipta. Kandungannya tidak boleh diubah dalam format lain tanpa kebenaran rasmi pemilik hakcipta.
PEMBINAAN INDEKS JENAYAH CURI KENDERAAN DENGAN PENDEKATAN BERBILANG KRITERIUM DALAM
PERSEKITARAN KABUR
MOHD.FIRDAUS BIN ABD KHABIR
DOKTOR FALSAFAH
UNIVERSITI UTARA MALAYSIA
2022
ii
Permission to Use
In presenting this thesis in fulfilment of the requirements for a postgraduate degree from Universiti Utara Malaysia, I agree that the Universiti Library may make it freely available for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to Universiti Utara Malaysia for any scholarly use which may be made of any material from my thesis.
Requests for permission to copy or to make other use of materials in this thesis, in whole or in part, should be addressed to:
Dean of Awang Had Salleh Graduate School of Arts and Sciences UUM College of Arts and Sciences
Universiti Utara Malaysia 06010 UUM Sintok
iii
Abstrak
Indeks merupakan satu pengukur prestasi sesuatu keadaan yang memaparkan nilai skor akhir yang terhasil daripada gabungan beberapa nilai kriteria secara matematik.
Indeks jenayah yang melibatkan curi kenderaan sedia ada hanya mengandaikan semua kriteria adalah sama penting dan berasaskan data berangka semata-mata tanpa mengambilkira perihal kekaburan khususnya, dari aspek punca berlakunya jenayah tersebut. Selain itu, tiada penglibatan pembuat keputusan yang berupaya untuk menilai tahap sumbangan kriteria jenayah berdasarkan pengetahuan dan pengalaman mereka.
Oleh itu kajian ini membangunkan Indeks Jenayah Curi kenderaan (InJeCK) yang ditambah baik dengan mengambilkira perihal kekaburan. InJeCK ini juga melibatkan pembuat keputusan dalam menentukan darjah sumbangan kriteria di samping analisis data berangka yang diperoleh daripada agensi berkaitan. Wajaran subjektif yang diguna dalam kajian ini memanfaatkan nombor-Z melalui tahap sumbangan kriteria yang dinilai dalam perwakilan dua nombor kabur segitiga. Wajaran objektif pula menggunakan tahap ketaktentuan melalui pengukuran entropi. Kedua-dua wajaran ini digabung membentuk wajaran teragregat yang mengimbangi kelemahan kedua-dua wajaran subjektif dan objektif. Seterusnya, nilai InJeCK dikira berasaskan Teknik Urutan Keutamaan Irasan Selesaian Ideal (TOPSIS) bagi memangkat 82 kawasan di Semenanjung Malaysia. Nilai InJeCK dipaparkan secara visual menggunakan peta berwarna supaya lebih berinformasi. Hasil kajian menunjukkan kriteria curi kereta, pendidikan tinggi dan pengangguran merupakan tiga kriteria paling mempengaruhi jenayah kecurian kenderaan berdasarkan wajaran teragregat. Nilai InJeCK memaparkan Kuala Lumpur merupakan kawasan yang paling berisiko bagi kes kecurian kenderaan. Kajian ini telah menyumbang kepada bidang pembuatan keputusan berbilang kriterium dengan mengambilkira persekitaran kabur dalam pembinaan indeks jenayah curi kenderaan. Selain itu, dapatan kajian juga dapat membantu pihak terlibat dalam membendung kejadian jenayah curi kenderaan khususnya dan jenayah harta benda umumnya.
Kata Kunci: Berbilang Kriterium, Entropi, Indeks Jenayah Curi Kenderaan, Kabur, Nombor-Z.
iv
Abstract
An index is a measure of the performance of a situation that displays the value of the final score resulting from a combination of several criteria values mathematically. The existing index of vehicle theft is built on the assumption that all criteria are equally important and based on numerical data only without considering ambiguity aspect, particularly the causes of the crime. Moreover, there was no decision-makers involvement to assess the level of contribution of criminal criteria based on their knowledge and experience. Therefore, this study developed an improved InJeCK by considering the fuzziness. InJeCK also involves decision-makers in determining the degree of importance of vehicle theft crime criteria, in addition to numerical data analysis obtained from related agencies. The subjective weights in this study utilized Z-numbers through the level of contribution of the criteria evaluated in the representation of two triangular fuzzy numbers. Objective weights used the degree of uncertainty through entropy measurements. These two weights were aggregated to form an aggregated weight that balances the weaknesses of both subjective and objective weights. Next, InJeCK was computed based on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank 82 areas in Peninsular Malaysia. InJeCK values were visualized using color maps to be more informative.
The results show that the criteria of car theft, higher education and unemployment are the three most influential criteria in vehicle theft crime based on the aggregated weights. The InJeCK values show that Kuala Lumpur is the riskiest area for vehicle theft cases. This study has contributed to the field of multi-criteria decision-making by considering fuzzy environment in the development of vehicle theft crime index.
Besides, the findings of the study can also assist those involved in curbing vehicle theft in particular and property crime in general.
Keywords: Multi-criteria, Entropy, Vehicle Theft Crime Index, Fuzzy, Z-Number.
v
Penghargaan
Alhamdulillah, di sini saya ingin merakamkan ucapan jutaan terima kasih kepada penyelia utama saya Prof Dr. Maznah Mat Kasim atas segala nasihat, tunjuk ajar dan kata-kata semangat sepanjang tempoh perjalanan ini. Tidak dilupakan kepada penyelia kedua, Dr Malina Zulkifli yang sentiasa memberi teguran dan panduan dalam penulisan akademik. Tanpa bantuan kalian, tidak mungkin perjalanan ini mampu di sudahkan dengan jayanya. Saya juga ingin mengucapkan terima kasih kepada pihak Kementerian Pengajian Tinggi yang sudi menaja pengajian saya melalui biasiswa MyBrain15. Terima kasih juga diucapkan kepada pihak Universiti Utara Malaysia (UUM) khususnya para kakitangan, School of Quantitative Sciences, Awang Had Salleh Graduate School dan U-Assist UUM kerana kerjasama yang baik diberikan ketika saya memerlukan bantuan. Seterusnya ribuan terima kasih diucapkan kepada kedua ibubapa saya yang telah banyak memberi bantuan khususnya dalam bentuk kewangan dikala saya dan keluarga dalam kesempitan. Tidak dilupakan isteri saya, Nurul Huda, kerana tidak pernah sesekali berputus asa terhadap suaminya dan sentiasa memberi sokongan moral, doa dan bantuan dalam menguruskan hal-hal rumah tangga dan urusan persekolahan anak-anak. Sesungguhnya perjalanan yang bermula pada 2014 sehingga 2022 bukanlah suatu perkara yang mudah. Kepada Afham, Amni, Aslam, Akram dan Aira, abah mohon maaf sekiranya abah tidak dapat meluangkan masa dengan kamu semua. Diharapkan pencapaian abah ini menjadi satu penanda aras bagi kamu semua agar kamu dapat capai kejayaan yang lebih baik di masa hadapan, insha-Allah. Akhir sekali, tidak dilupakan kepada rakan-rakan yang tidak putus mendoakan saya, terima kasih yang tidak terhingga diucapkan. Hanya Allah swt yang mampu membalas segala jasa baik kalian.
vi
Isi Kandungan
Permission to Use ... ii
Abstrak ... iii
Abstract ... iv
Penghargaan...v
Isi Kandungan ... vii
Senarai Jadual... xii
Senarai Rajah ... xiiii
Senarai Lampiran ... xivv
BAB SATU PENGENALAN ... 1
1.1 Latar Belakang Kajian ... 1
1.2 Jenayah Kecurian Kenderaan Sebahagian daripada Jenayah Harta Benda ... 2
1.3 Peranan Indeks ... 4
1.4 Pembuatan Keputusan Berbilang Kriterium ... 7
1.5 Konsep Kabur Subjektif ... 10
1.6 Fungsi Pemetaan Jenayah Kecurian Kenderaan ... 12
1.7 Pernyataan Masalah ... 13
1.8 Persoalan Kajian ... 16
1.9 Objektif Kajian ... 17
1.10 Skop Kajian ... 17
1.11 Kepentingan Kajian ... 18
1.12 Susun Atur Tesis ... 19
BAB DUA ULASAN KARYA ... 21
2.0 Pengenalan ... 21
2.1 Kriminologi ... 22
vii
2.2 Faktor yang Menyumbang kepada Kejadian Jenayah Kecurian Kenderaan .... 25
2.2.1 Dadah ... 25
2.2.2 Pengangguran ... 27
2.2.3 Pendidikan ... 29
2.2.4 Pendatang Asing ... 30
2.2.5 Perbandaran ... 32
2.2.6 Kemiskinan ... 34
2.2.7 Cuaca dan Bencana Alam ... 35
2.2.8 Remaja Lelaki ... 37
2.2.9 Kaum... 38
2.2.10 Keadaan Keluarga ... 39
2.2.11 Kelas Sosial ... 40
2.3 Kecurian Kenderaan ... 41
2.3.1 Perihal Individu yang Terlibat dalam Jenayah Kecurian Kenderaan ... 43
2.3.2 Matlamat Penjenayah Curi Kenderaan ... 45
2.3.3 Modus Operandi dan Teknik Penjenayah Mencuri Kenderaan ... 46
2.4 Pembuatan Keputusan ... 48
2.4.1 Pembuatan Keputusan Berbilang Kriterium (PKBK)... 50
2.4.1.1 TOPSIS ... 53
2.4.1.2 ELECTRE ... 55
2.4.1.3 PROMETHEE ... 57
2.4.1.4 Pembuatan Keputusan Berbilang Kriterium dalam Kumpulan ... 60
2.4.2 Jenis- Jenis Wajaran ... 61
2.4.2.1 Wajaran Objektif ... 62
2.4.2.2 Wajaran Subjektif ... 65
2.4.3 Langkah Penormalan ... 69
2.4.4 Pengagregatan ... 70
viii
2.4.4.1 Hasil Tambah Berwajaran (HTB) ... 71
2.4.4.2 Hasil Darab Berwajaran ... 72
2.5 Kekaburan dalam Pembuatan Keputusan Berbilang Kriteria (PKBK) ... 73
2.5.1 Nombor Kabur ... 75
2.5.1.1 Nombor-Z ... 79
2.5.1.2 Aplikasi Nombor-Z dalam Pembuatan Keputusan Berbilang Kriteria (PKBK) ... 79
2.5.1.3 Penggunaan Konsep Nombor-Z ... 82
2.5.2 Entropi ... 84
2.6 Indeks ... 87
2.7 Pemetaan Jenayah Curi Kenderaan ... 92
2.8 Ringkasan ... 97
BAB TIGA METODOLOGI ... 100
3.0 Pengenalan ... 100
3.1 Rangka Kajian ... 101
3.2 Pembinaan Instrumen ... 106
3.3 Pengumpulan Data ... 107
3.3.1 Data Primer ... 108
3.3.2 Data Sekunder ... 109
3.4 Latar Belakang Teori Kabur ... 110
3.4.1 Kaedah Asas Kabur Segitiga ... 110
3.4.2 Konsep dan Definisi Nombor-Z ... 111
3.5 Penentuan Wajaran ... 116
3.5.1 Penentuan Wajaran Subjektif ... 116
3.5.2 Penentuan Wajaran Objektif ... 120
3.5.3 Penentuan Wajaran Teragregat ... 123
3.6 Pembinaan Indeks Jenayah Curi Kenderaan (InJeCK) ... 124
ix
3.7 Pemetaan Indeks Jenayah Curi Kenderaan (InJeCK) ... 128
3.8 Rumusan ... 130
BAB EMPAT HASIL KAJIAN DAN PERBINCANGAN ... 131
4.0 Pengenalan ... 131
4.1 Data ... 131
4.1.1 Data Primer ... 132
4.1.2 Data Sekunder ... 136
4.2 Nilai Wajaran Kriteria ... 137
4.2.1 Wajaran Subjektif Kriteria ... 139
4.2.2 Wajaran Objektif Kriteria ... 145
4.2.3 Wajaran Teragregat Kriteria dalam Indeks Jenayah Kecurian Kenderaan...152
4.3 Pembentukan Indeks Jenayah Curi Kenderaan (InJeCK) ... 154
4.3.1 Pembinaan Indeks Jenayah Kecurian Kenderaan Berwajaran Subjektif Kriteria dan Berwajaran Objektif Kriteria ... 163
4.3.2 Analisis Perbandingan Indeks Jenayah Kecurian Kenderaan Berlainan Wajaran Kriteria ... 172
4.4 Pemetaan Indeks Jenayah Curi Kenderaan ... 177
4.5 Dapatan Tambahan ... 182
4.5.1 Faktor Lain Kejadian Jenayah Kecurian Kenderaan ... 183
4.5.2 Perincian Penjenayah Curi Kenderaan ... 186
4.6 Rumusan ... 188
BAB LIMA KESIMPULAN ... 191
5.0 Pengenalan ... 191
5.1 Kesimpulan ... 191
5.2 Sumbangan Kajian ... 195
x
5.4 Saranan Kajian Lanjut ... 201 RUJUKAN ... 203 LAMPIRAN (SOALAN SOAL SELIDIK) ... 241
xi
Senarai Jadual
Jadual 3.1 Fungsi kabur segitiga………113
Jadual 3.2 Jadual nilai pembolehubah linguistik dalam perwakilan nombor kabur segitiga……….……….116
Jadual 4.1 Maklumat responden ………...………133
Jadual 4.2 Ringkasan kriteria jenayah curi kenderaan …………..……….135
Jadual 4.3 Ringkasan data daripada PDRM, AADK dan ISM………..…137
Jadual 4.4 Wajaran subjektif kriteria………...………..141
Jadual 4.5 Ringkasan sebahagian data untuk penentuan wajaran objektif…………145
Jadual 4.6 Data ternormal…...………....………...147
Jadual 4.7 Nilai ketentuan dan ketaktentuan……..……..………..150
Jadual 4.8 Wajaran objektif kriteria………...151
Jadual 4.9 Wajaran teragregat dan pangkat kriteria jenayah curi kenderaan………152
Jadual 4.10 Matriks pemutusan ternormal berwajaran teragregat……….155
Jadual 4.11 Penetapan kriteria manfaat, kriteria kos, penyelesaian unggul positif dan penyelesaian unggul negatif…………... ....………...158
Jadual 4.12 Penyelesaian unggul positif dan penyelesaian unggul negatif bagi setiap kriteria…………...……….……158
Jadual 4.13 Penentuan jarak pemisahan setiap kawasan dari dua penyelesaian unggul positif dan unggul negatif serta indeks jenayah bagi harta benda bagi setiap kawasan………..161
Jadual 4.14 Matriks pemutusan penormalan berwajaran objektif………..165
Jadual 4.15 Matriks pemutusan penormalan berwajaran subjektif………168
Jadual 4.16 Penyelesaian unggul positif dan penyelesaian unggul negatif bagi indeks berwajaran objektif…………...…..………171
Jadual 4.17 Penyelesaian unggul positif dan penyelesaian unggul negatif bagi indeks berwajaran subjektif………..……...171
Jadual 4.18 Perbandingan indeks jenayah curi kenderaan berlainan asas wajaran…173 Jadual 4.19 Perbandingan nilai sisihan piawai dalam kalangan tiga indeks jenayah kenderaan berlainan asas wajaran………..176
Jadual 4.20 Ringkasan bilangan kawasan mengikut Bahagian di Semenanjung Malaysia……….181
Jadual 4.21 Faktor lain yang berkait dengan jenayah kecurian kenderaan.………..184
xii
Jadual 4.22 Perincian mengenai jenayah kecurian kenderaan……….………..186
xiii
Senarai Rajah
Rajah 2.1: Teknik Pemberatan Grafik menggunakan garis lurus melintang...68
Rajah 2.3: Keadaan ketaktentuan dalam satu kumpulan data...85
Rajah 2.4: Pemetaan bersimbol tunggal...96
Rajah 2.5: Pemetaan berperingkat...97
Rajah 2.6: Pemetaan berperingkat berciri poligon berwarna...97
Rajah 3.1: Carta aliran pembinaan indeks jenayah curi kenderaan...104
Rajah 3.2: Nombor kabur segitiga...110
Rajah 3.3: Fungsi Kabur segitiga...112
Rajah 3.4: Darjah keahlian kriteria...113
Rajah 3.5: Nombor kabur segitiga bagi komponen Ãkl...115
Rajah 3.6: Nombor kabur segitiga bagi komponen B̃kl...115
Rajah 3.7: Matriks pemutusan...120
Rajah 4.1: Penglibatan dalam tugas...134
Rajah 4.2: Perbandingan nilai wajaran objektif kriteria dan nilai entropi kriteria....150
Rajah 4.3: Pemetaan indeks jenayah curi kenderaan...178
Rajah 4.4: Impak jenayah kecurian kenderaan pada kawasan sekitar Kuala Lumpur180 Rajah 4.5: Pemetaan mengikut bahagian besar di Semenanjung Malaysia...181
xiv
Senarai Lampiran
Soalan soal selidik...241
1
BAB SATU
PENGENALAN
1.1 Latar Belakang Kajian
Keselamatan adalah keperluan asas bagi individu atau masyarakat. Hal ini telah dibuktikan oleh Abraham Maslow melalui Hierarki Keperluan Maslow yang menyatakan bahawa keselamatan merupakan antara asas penting keperluan manusia (Maslow, 1943). Pelbagai manfaat dapat diperoleh daripada keselamatan yang berkualiti. Perkara asas seperti pendidikan bagi menjana perkembangan modal insan amat memerlukan suasana yang damai sebagai asas bagi mencapai matlamat membina satu negara yang sejahtera.
Dalam usaha mencapai status sebuah negara yang sejahtera, beberapa perkara seperti keselamatan, pengangkutan awam, pendidikan, dan ekonomi harus dititikberatkan.
Oleh itu, matlamat murni pembinaan negara sejahtera tidak wajar diganggu gugat oleh elemen negatif seperti masalah jenayah. Masalah jenayah ini harus dibendung hingga ke akar umbi bagi memastikan kelancaran proses transformasi oleh pihak berwajib bergerak seiring dengan perancangan strategik yang telah dirancang.
Jenayah boleh dibahagikan kepada beberapa bahagian antaranya jenayah kekerasan, jenayah narkotik, jenayah komersial, dan jenayah harta benda (The Official Portal of Royal Malaysia Police, 2017). Jenayah rogol dan bunuh diklasifikasikan sebagai jenayah kekerasan manakala jenayah curi kenderaan dan pecah rumah dikategorikan sebagai jenayah harta benda (Ismail & Ramli, 2013). Walaupun jenayah kekerasan
203
RUJUKAN
Abd Khabir, M. F., Kasim, M. M., & Zulkifli, M. (2017). Construction of vehicle theft index by using TOPSIS method with entropy based criteria weights. International Journal of Supply Chain Management, 6(4), 294–298.
Abu Bakar, A. S., & Gegov, A. (2015). Multi-layer decision methodology for ranking Z-numbers. International Journal of Computational Intelligence Systems, 8(2), 395–406. https://doi.org/10.1080/18756891.2015.1017371
Addis, N., Evans, A., & Malleson, N. (2019). Exploring the practices of steal-to-order burglars: a different brand of offender? Security Journal (Vol. 32).
https://doi.org/10.1057/s41284-019-00174-w
Adelman, R., Reid, L. W., Markle, G., Weiss, S., & Jaret, C. (2017). Urban crime rates and the changing face of immigration: Evidence across four decades. Journal of Ethnicity in Criminal Justice, 15(1), 52–77.
https://doi.org/10.1080/15377938.2016.1261057
Adetula, G. A. (2013). Nigeria Crime Index Assessment and Classification. Journal of Applied Security Research, 8(3), 404–418.
https://doi.org/10.1080/19361610.2013.794409
Adhikary, P., Kundu, S., Roy, P. K., & Mazumdar, A. (2013). Optimum selection of Hydraulic Turbine Manufacturer for SHP : MCDA or MCDM Tools. World Applied Sciences Journal, 28(7), 914–919.
https://doi.org/10.5829/idosi.wasj.2013.28.07.1373
Ahmad, A. S., & Mohammad, F. H. (2011). Kesan Kitaran Ekonomi Terhadap Peningkatan Kadar Indeks Jenayah di Malaysia, 1, 492–501.
Ahn, B. S. (2011). Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach. European Journal of Operational
204
Research, 212(3), 552–559. https://doi.org/10.1016/j.ejor.2011.02.017
Akram, M., Ilyas, F., & Garg, H. (2020). Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information. Soft Computing, 24(5), 3425–3453. https://doi.org/10.1007/s00500-019-04105-0
Alam, M., Dupras, J., & Messier, C. (2016). A framework towards a composite indicator for urban ecosystem services. Ecological Indicators, 60, 38–44.
https://doi.org/10.1016/j.ecolind.2015.05.035
Alemi-Ardakani, M., Milani, A. S., Yannacopoulos, S., & Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems with Applications, 46, 426–438.
https://doi.org/10.1016/j.eswa.2015.11.003
Aliev, R., Huseynov, O. H., Aliyew, R. R., & Alizadeh, A. A. (2015). The arithmetics of Z-number Theory and applications. World Scientific (Vol. I). Singapore: World Scientific. https://doi.org/10.1007/s13398-014-0173-7.2
Aliev, R., & Memmedova, K. (2015). Application of Z-Number Based Modeling in Psychological Research. Computational Intelligence and Neuroscience, 2015, 760403. https://doi.org/10.1155/2015/760403
Alkire, S., & Santos, M. E. (2011). Acute Multidimensional Poverty: A new index for Developing Countries. In German Development Economic Conference.
Allcock, E., Bond, J. W., & Smith, L. L. (2011). An investigation into the crime scene characteristics that differentiate a car key burgiary from a reguiar domestic burgiary. International of Police Science & Management, 13(4), 275–285.
https://doi.org/10.1350/ijp
Allen, R. C. (1996). Socioeconomic Conditions and Property Crime : A
205
Comprehensive Review and Test of the Professional Literature.
American Journal of Economics and Sociology, 55, 293–308.
https://doi.org/10.1111/j.1536-7150.1996.tb02311.x
Almeida, T. A. das N., Cruz, L., Barata, E., & García-Sánchez, I. M. (2017). Economic growth and environmental impacts: An analysis based on a composite index of environmental damage. Ecological Indicators, 76, 119–130.
https://doi.org/10.1016/j.ecolind.2016.12.028
Altier, M. B., Thoroughgood, C. N., & Horgan, J. G. (2014). Turning away from terrorism: Lessons from psychology, sociology, and criminology. Journal of Peace Research, 51(5), 647–661. https://doi.org/10.1177/0022343314535946 Altindag, D. T. (2012). Crime and unemployment: Evidence from Europe.
International Review of Law and Economics, 32(1), 145–157.
https://doi.org/10.1016/j.irle.2011.10.003
Anatol, M., & Kangalee, Q.-M. (2020). Crime in Trinidad and Tobago: the possible impacts of increased crime due to migration from Venezuela. Migration and Development, 1–13. https://doi.org/10.1080/21632324.2020.1809281
Anderson, J., & Linden, R. (2014). Why Steal Cars? A Study of Young Offenders Involved in Auto Theft. Canadian Journal of Criminology and Criminal Justice, 56(2), 241–260. https://doi.org/10.3138/cjccj.2014.ES06
Andresen, M. A. (2015). Unemployment, GDP, and crime: The importance of multiple measurements of the economy. Canadian Journal of Criminology and Criminal Justice, 57(1), 35–58. https://doi.org/10.3138/cjccj.2013.E37
Asia: Crime Index by Country 2017 Mid-Year. Retrieved December 16, 2017, from https://www.numbeo.com/crime/rankings_by_country.jsp?title=2017-
mid®ion=142
206
Assarut, N., Bunaramrueang, P., & Kowpatanakit, P. (2019). Clustering cyberspace population and the tendency to commit cyber crime: A quantitative application of space transition theory. International Journal of Cyber Criminology, 13(1), 84–
100. https://doi.org/10.5281/zenodo.3550473
Attardi, R., Cerreta, M., Sannicandro, V., & Torre, C. M. (2018). Non-compensatory composite indicators for the evaluation of urban planning policy: The Land-Use Policy Efficiency Index (LUPEI). European Journal of Operational Research, 264(2), 491–507. https://doi.org/10.1016/j.ejor.2017.07.064
Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., & Pazhoheshfar, P. (2013). Z- AHP: A Z-number extension of fuzzy analytical hierarchy process. 2013 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST), 141–147. https://doi.org/10.1109/DEST.2013.6611344
Bakar, A. A., Osman, M. M., Bachok, S., & Ibrahim, M. (2016). Sustainbale Wellbeing Indicators for Malaysia : an Alternative To Malaysia Wellbeing.
Baker, S. R. (2015). Effects of immigrant legalization on crime. In American Economic Review (Vol. 105, pp. 210–213). American Economic Association.
https://doi.org/10.1257/aer.p20151041
Banjir: Kecurian menjadi-jadi di Temerloh - Malaysiakini Berita. (2015). Retrieved April 4, 2016, from https://www.malaysiakini.com/news/285714
Bas¸türk, F. H. (2020). Insurance Fraud: The Case in Turkey. In emerald.com (pp. 77–
97). https://doi.org/10.1108/s1569-375920200000102009 Batty, M. (2013). A theory of city size. Science, 340.
https://doi.org/10.1126/science.123
Beatton, Kid, M. & S. (2016). Larrikin Youth : New Evidence on Crime and Schooling. Elsevier, (1456). Retrieved from
207
https://www.sciencedirect.com/science/article/pii/B9780128153918000094 Becker, W., Saisana, M., Paruolo, P., & Vandecasteele, I. (2017). Weights and
importance in composite indicators: Closing the gap. Ecological Indicators, 80(March), 12–22. https://doi.org/10.1016/j.ecolind.2017.03.056
Bedu, H., Katip, K., Mohd Sahid, M. F., & Syed Mansor, S. M. S. (2008). Keruntuhan akhlak dan gejala sosial dalam keluarga; isu dan cabaran. In Seminar Kaunseling Keluarga 2008 (pp. 51–63). Retrieved from http://eprints.utm.my.sci- hub.org/6511
Behzadian, M., Samizadeh, R., & Nazemi, J. (2010). Decision making in house of quality: A hybrid AHP-PROMETHEE approach. In IEEM2010 - IEEE International Conference on Industrial Engineering and Engineering Management (pp. 930–934). https://doi.org/10.1109/IEEM.2010.5674213 Bell, B., Costa, R., & Machin, S. (2016). Crime, compulsory schooling laws and
education. Economics of Education Review, 54, 214–226.
https://doi.org/10.1016/j.econedurev.2015.09.007
Bell, B., Costa, R., & Machin, S. (2018). Why Does Education Reduce Crime? Centre for Economic Performance. Retrieved from www.iza.org
Bhattacharya, S. (2013). A Global Spiritual Index, Its Predictors and Relationship to Crime. Journal of Human Values, 19, 83–104.
https://doi.org/10.1177/0971685812470346
Blakeslee, D., & Fishman, R. (2014). Weather shocks, crime, and agriculture: evidence from India. Social Science Research Network, 1–51. Retrieved from http://sites.bu.edu/neudc/files/2014/10/paper_344.pdf
Block, S. (2012). An analysis of international exported vehicle theft in two high risk cities. The state university of New Jersey.
208
Blumstein, A. (1974). Seriousness weight in an index of crime. American Sociological Review, 39(6), 854–864.
Boba, R. (2017). Introductory Guide to Crime Analysis and Mapping. Community Oriented Policing Services.
Breetzke, G. D. (2018). The concentration of urban crime in space by race: evidence from South Africa. Urban Geography, 39(8), 1195–1220.
https://doi.org/10.1080/02723638.2018.1440127
Brown, R. (2015). Explaining the property crime drop: The offender perspective.
Trends and Issues in Crime and Criminal Justice. Retrieved from https://www.researchgate.net/publication/277142946
Bruce, L. B., Iljoong, K., David, W. R., & Thomas, W. Z. (1992). Is property crime caused by drug use or by drug enforcement policy? Applied Economics, (24), 679–692. Retrieved from
http://www.tandfonline.com/doi/abs/10.1080/00036849200000036
Çam, T. (2014). Testing social disorganisation theory for the causes of index (major) crime incidence among turkish juveniles. Electronic Journal of Social Sciences, 13(51), 329–346.
Cao, Q., Wu, J., & Liangb, C. (2015). An intuitionsitic fuzzy judgement matrix and TOPSIS integrated multi-criteria decision making method for green supplier selection. Journal of Intelligent and Fuzzy Systems, 28(1), 117–126.
https://doi.org/10.3233/IFS-141281
Cengiz Toklu, M. (2017). Determination of customer loyalty levels by using fuzzy MCDM approaches. In Acta Physica Polonica A (Vol. 132, pp. 650–654).
https://doi.org/10.12693/APhysPolA.132.650
Chakraborty, S., Zavadskas, K. E., & Antucheviciene, J. (2014). Applications of
209
waspas method as a multi-criteria decision making tool. Economic Computation
& Economic Cybernetics Studies & Research, 49(1), 1–17.
Chalfin, A. (2014). What is the contribution of Mexican immigration to U.S. crime rates? Evidence from rainfall shocks in Mexico. American Law and Economics Review, 16(1), 220–268. https://doi.org/10.1093/aler/aht019
Chapman, B., Kapuscinski, C. A., Roussel, S., Weatherburn, D., & Chilvers, M.
(2002). Unemployment duration , schooling and property crime, (October).
Chatterjee, K., & Kar, S. (2018). A multi-criteria decision making for renewable energy selection using Z-numbers in uncertain environment. Technological and Economic Development of Economy, 24(2), 739–764.
https://doi.org/10.3846/20294913.2016.1261375
Chen, C. H. (2020). A novel multi-criteria decision-making model for building material supplier selection based on entropy-AHP weighted TOPSIS. Entropy, 22(2). https://doi.org/10.3390/e22020259
Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A.,
… Tarantola, S. (2008). Creating composite indicators with DEA and robustness analysis: The case of the Technology Achievement Index. Journal of the Operational Research Society, 59(2), 239–251.
https://doi.org/10.1057/palgrave.jors.2602445
Chiricos, T. G. (1987). Rates of Crime and Unemployment: An Analysis of Aggregate Research Evidence. Journal of Social Problems, 34(2), 187–212.
https://doi.org/10.2307/800715
Chou, C.-C. (2003). The canonical representation of multiplication operation on triangular fuzzy numbers. Computers & Mathematics with Applications, 45(10–
11), 1601–1610. https://doi.org/10.1016/S0898-1221(03)00139-1
210
Chou, S.-Y., Chang, Y.-H., & Shen, C.-Y. (2008). A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes. European Journal of Operational Research, 189(1), 132–145. https://doi.org/10.1016/j.ejor.2007.05.006
Chutia, R. (2021). Ranking of Z-numbers based on value and ambiguity at levels of decision making. International Journal of Intelligent Systems, 36(1), 313–331.
https://doi.org/10.1002/int.22301
Clarke, R. V., & Brown, R. (2019). International Trafficking of Stolen Vehicles. In International Crime and Justice (pp. 126–132). Cambridge University Press.
https://doi.org/10.1017/cbo9780511762116.022
Cohen, I. K., Ferretti, F., & McIntosh, B. (2014). Decomposing the misery index: A dynamic approach. Cogent Economics and Finance. Cogent OA.
https://doi.org/10.1080/23322039.2014.991089
Cohen, S. (2018). Criminology and the sociology of deviance in britain: A recent history and a current report. In Deviance and Social Control (pp. 1–40).
https://doi.org/10.4324/9781351059039-1
Coley, R. L., Sims, J., Dearing, E., & Spielvogel, B. (2018). Locating Economic Risks for Adolescent Mental and Behavioral Health: Poverty and Affluence in Families, Neighborhoods, and Schools. Child Development, 89(2), 360–369.
https://doi.org/10.1111/cdev.12771
Conklin, J. E. (1981). Criminology. Criminology. Retrieved from http://0- search.ebscohost.com.maurice.bgsu.edu/login.aspx?direct=true&db=sih&AN=S M078310&login.asp&site=ehost-live&scope=site
d’Este, R. (2020). Breaking the Crystal Methamphetamine Economy: Illegal Drugs, Supply-side Interventions and Crime Responses. Economica.
211 https://doi.org/10.1111/ecca.12351
Dana, M. B., Shannon, K. J., & Howard, G. E. (2017). A Gender Lens of Criminology.
In The Gender of Crime.
del Moral, M. J., Chiclana, F., Tapia, J. M., & Herrera-Viedma, E. (2018). A comparative study on consensus measures in group decision making.
International Journal of Intelligent Systems, 33(8), 1624–1638.
https://doi.org/10.1002/int.21954
Delisi, M., Alcala, J., Kusow, A., Hochstetler, A., Heirigs, M. H., Caudill, J. W., Baglivio, M. T. (2017). Adverse childhood experiences, commitment offense, and race/ethnicity: Are the effects crime-, race-, and ethnicity-specific?
International Journal of Environmental Research and Public Health, 14(3).
https://doi.org/10.3390/ijerph14030331
Deng, H., Yeh, C. H., & Willis, R. R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research, 27(10), 963–973. https://doi.org/10.1016/S0305-0548(99)00069-6
Denney, D. (2019). Poverty and crime. In Routledge International Handbook of Poverty (pp. 298–306). https://doi.org/10.4324/9780429058103-23
Des Rosiers, N., & Bittle, S. (2004). What is Crime. (The Law Commision of Canada, Ed.), What is Crime. Vancouver: UBC press.
Deshmukh, S. C. (2013). Preference Ranking Organization Method Of Enrichment Evaluation (Promethee). International Journal of Engineering Science Invention, 2(11), 28–34.
Dey, B., Bairagi, B., Sarkar, B., & Sanyal, S. K. (2016). Warehouse location selection by fuzzy multi-criteria decision making methodologies based on subjective and objective criteria. International Journal of Management Science and Engineering
212
Management, 11(4), 262–278. https://doi.org/10.1080/17509653.2015.1086964 Diao, L. W., & Liang, W. T. (2015). The Evaluation of COAs Based on Stochastic
Interval Weighted Sum Method. Applied Mechanics and Materials, 719–720, 1108–1115. https://doi.org/10.4028/www.scientific.net/AMM.719-720.1108 Dočekalová, M. P., & Kocmanová, A. (2016). Composite indicator for measuring
corporate sustainability. Ecological Indicators, 61, 612–623.
https://doi.org/10.1016/j.ecolind.2015.10.012
Economic Planning Unit. (2011). Malaysia Quality of Life 2011. Economic Planning Unit Prime Miniter’s Department Putrajaya.
Elahi, Y., & Mohd Ismail Abd Aziz. (2014). Mean-Variance-CvaR Model of Multiportfolio Optimization via, 2014.
Enriquez, R. (2009). Criminal Law. In M. J. Miller (Ed.), 21st Century Criminology (p. 915).
Eswar Kumar, M., Thippa Reddy, G., Sudheer, K., Praveen Kumar Reddy, M., Kaluri, R., Singh Rajput, D., & Lakshmanna, K. (2017). Vehicle Theft Identification and Intimation Using GSM & IOT. In IOP Conference Series: Materials Science and Engineering (Vol. 263). https://doi.org/10.1088/1757-899X/263/4/042062 Fallahi, F., & Rodríguez, G. (2014). Link between unemployment and crime in the
US: A Markov-Switching approach. Social Science Research, 45, 33–45.
https://doi.org/10.1016/j.ssresearch.2013.12.007
Fella, G., & Gallipoli, G. (2014). Education and crime over the life cycle. Review of Economic Studies, 81(4), 1484–1517. https://doi.org/10.1093/restud/rdu014 Felson, R. B., & Staff, J. (2017). Committing economic crime for drug money. Crime
and Delinquency, 63(4), 375–390. https://doi.org/10.1177/0011128715591696 Feng, J., Dong, Y., & Song, L. (2016). A spatio-temporal analysis of urban crime in
213
Beijing: Based on data for property crime. Urban Studies, 53(15), 3223–3245.
https://doi.org/10.1177/0042098015612982
Feylizadeh, M. R., & Bagherpour, M. (2018). Manufacturing Performance Measurement Using Fuzzy Multi-Attribute Utility Theory And Z-Number.
Transaction of FAMENA, 1, 37–49.
Field, S. (1992). The effect of temperature on crime. British Journal of Criminology, 32(3), 340–351. Retrieved from
http://bjc.oxfordjournals.org/content/32/3/340.short
Figueira, J., Mousseau, V., & Roy, B. (2005). Chapter 1 ELECTRE METHODS Introduction : A brief History. Multiple Criteria Decision Analysis: State of the Art Surveys, 1–35. https://doi.org/Doi 10.1007/0-387-23081-5_4
Gao, J., Guo, F., Ma, Z., Huang, X., & Li, X. (2020). Multi-criteria group decision- making framework for offshore wind farm site selection based on the intuitionistic linguistic aggregation operators. Energy, 204.
https://doi.org/10.1016/j.energy.2020.117899
Gardashova, L. a. (2014). Application of Operational Approaches to Solving Decision Making Problem Using Z-Numbers. Applied Mathematics, 05(09), 1323–1334.
https://doi.org/10.4236/am.2014.59125
Ghani, Z. A. (2017). A comparative study of urban crime between Malaysia and Nigeria. Journal of Urban Management, 6(1), 19–29.
https://doi.org/10.1016/j.jum.2017.03.001
Gomes, C. F. S., Nunes, K. R. A., Xavier, H. L., Cardoso, R., & Valle, R. (2008).
Multicriteria decision making applied to waste recycling in Brazil. The International Journal of Management Science, 36, 395–404.
https://doi.org/10.1016/j.omega.2006.07.009
214
Gómez-Vega, M., & J Picazo-Tadeo, A. (2019). Ranking world tourist destinations with a composite indicator of competitiveness: To weigh or not to weigh?
Tourism Management, 72, 281–291.
https://doi.org/10.1016/j.tourman.2018.11.006
Gonzalez-Navarro, M. (2013). Deterrence and geographical externalities in auto theft.
American Economic Journal: Applied Economics, 5, 92–110.
https://doi.org/10.1257/app.5.4.92
Habibullah, M. S. (2017). The effects of weather on crime rates in Malaysia.
International Journal of Business and Society, 18(2), 263–270.
https://doi.org/10.33736/ijbs.482.2017
Habidin, N. F., Zubir, A. F. M., Fuzi, N. M., Latip, N. A. M., & Azman, M. N. A.
(2015). Sustainable Performance Measures for Malaysian Automotive Industry.
World Applied Sciences Journal, 33(6), 1017–1024.
https://doi.org/10.5829/idosi.wasj.2015.33.06.257
Hafiz, H. (2016). Malaysia dalam kedudukan antara negara teratas di peringkat global dalam kes curi kenderaan tertinggi; Proton Wira dan Toyota Hilux jadi sasaran utama. Retrieved October 22, 2020, from
https://paultan.org/2016/08/25/malaysia-di-tangga-ke-6-peringkat-global-kes- curi-kenderaan/
Hajjar, S. T. EL. (2018). Statistical Analysis: Internal-Consistency Reliability and Construct Validity. International Journal of Quantitative and Qualitative Research Methods, 6(1), 27–38. Retrieved from www.eajournals.org
Hajkowicz, S. (2006). Multi-attributed environmental index construction. Ecological Economics, 57(1), 122–139. https://doi.org/10.1016/j.ecolecon.2005.03.023 Halicioglu, F., Andrés, A. R., & Yamamura, E. (2012). Modeling crime in Japan.
215 Economic Modelling, 29(5), 1640–1645.
https://doi.org/10.1016/j.econmod.2012.05.026
Hansen, K. (2003). Education and the crime-age profile. British Journal of Criminology, 43, 141–168. https://doi.org/10.1093/bjc/43.1.141
Hansen, K., & Machin, S. (2012). Crime and the Minimum Wage, (December), 0–33.
Retrieved from
https://testwww2.bc.edu/andrewbeauchamp/crimemw_5_4_12.pdf
Harrendorf, S., Heiskanen, M., & Malby, S. (2010). International statistic on crime and justice. (S. Harrendorf, M. Heiskanen, & S. Malby, Eds.). Helsinki. Retrieved from https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=252824
Hart, T., & Zandbergen, P. (2014). Kernel density estimation and hotspot mapping:
Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing, 37(2), 305–323. https://doi.org/10.1108/PIJPSM- 04-2013-0039
Hassan, M. S., Akbar, M. S., Wajid, A., & Arshed, N. (2016). Poverty, urbanization and crime: Are they related in Pakistan. International Journal of Economics and Empirical Research, 4(9), 483–492.
Hatefi, S. M., & Torabi, S. A. (2010). A common weight MCDA-DEA approach to construct composite indicators. Ecological Economics, 70(1), 114–120.
https://doi.org/10.1016/j.ecolecon.2010.08.014
Hill, B., & Paynich, R. (2014). Foundation and Theoretical Perspectives. In Book (pp.
1–20). Retrieved from
http://samples.jbpub.com/9781284028065/48657_Hill_2e_CH01.pdf%5Cnhttp:/
/www.jblearning.com/catalog/9781284028065/
Hjalmarsson, R., Holmlund, H., & Lindquist, M. J. (2015). The Effect of Education on
216
Criminal Convictions and Incarceration: Causal Evidence from Micro-data.
Economic Journal, 125(587), 1290–1326. https://doi.org/10.1111/ecoj.12204 Hope, C., & Mocan, N. (1996). A time series Analysis of Crime and Drug Use in New
York City (No. 5463). Cambrige.
Huovari, J., Kangasharju, A., & Alanen, A. (2002). Constructing an Index for Regional Competitiveness. The Emergence of the Knowledge Economy, 44(June), 121–
138. https://doi.org/10.1007/978-3-540-24823-1_7
Hussain, S. A. I., Mandal, U. K., & Mondal, S. P. (2017). Entropy based MCDM approach for Selection of material. National Level Conference on Engineering Problems and Application of Mathematics, 1–7. Retrieved from
https://www.researchgate.net/publication/315668202
Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making.
In Methods for Multiple Attribute Decision Making (pp. 58–191).
https://doi.org/10.1007/978-3-642-48318-9_3
Iddrisu, I., & Bhattacharyya, S. C. (2015). Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development.
Renewable and Sustainable Energy Reviews.
https://doi.org/10.1016/j.rser.2015.05.032
Ihlanfeldt, K. (2002). Spatial mismatch in the labor market and racial differences in neighborhood crime. Economics Letters, 76(1), 73–76.
https://doi.org/10.1016/S0165-1765(02)00026-5
Institute for Economics and Peace. (2015). Global Peace Index 2015: Quantifying Peace and its Benefits. Institute for Economics and Peace. Retrieved from www.economicsandpeace.org
Ishak, S., & Bani, Y. (2017). Determinants of crime in Malaysia: Evidence from
217
developed states. International Journal of Economics and Management, 11(3 Special Issue), 607–622. Retrieved from http://www.econ.upm.edu.my/ijem Ismail, S., & Ramli, N. (2013). Short-term Crime Forecasting in Kedah. Procedia -
Social and Behavioral Sciences, 91, 654–660.
https://doi.org/10.1016/j.sbspro.2013.08.466
Iyer, L., & Topalova, P. (2014). Poverty and crime: evidence from rainfall and trade shocks in India. Harvard Business School BGIE Unit Working. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2419522
Jakob, W., & Blume, C. (2014). Pareto optimization or cascaded weighted sum: A comparison of concepts. Algorithms, 7(1), 166–185.
https://doi.org/10.3390/a7010166
Jamaludin, M. (2007). Aspek Keselamatan Awam Dalam Kajian Kes Alor Star , Kedah. Universiti Sains Malaysia.
Jefferson, B. J. (2018). Predictable Policing: Predictive Crime Mapping and Geographies of Policing and Race. Annals of the American Association of Geographers, 108(1), 1–16. https://doi.org/10.1080/24694452.2017.1293500 Jharkharia, S., & Shankar, R. (2007). Selection of logistics service provider: An
analytic network process (ANP) approach. Omega, 35(3), 274–289.
https://doi.org/10.1016/j.omega.2005.06.005
Jiang, W., Xie, C., Luo, Y., & Tang, Y. (2017). Ranking Z-numbers with an improved ranking method for generalized fuzzy numbers. Journal of Intelligent & Fuzzy Systems, 32(3), 1931–1943. https://doi.org/10.3233/JIFS-16139
Jiang, W., Xie, C., Zhuang, M., Shou, Y., & Tang, Y. (2016). Sensor Data Fusion with Z-Numbers and Its Application in Fault Diagnosis. Sensors, 16(9), 1509.
https://doi.org/10.3390/s16091509
218
Johnson, B., Richert, T., & Svensson, B. (2018). Parents as victims of property crime committed by their adult children with drug problems: Results from a self-report study. International Review of Victimology, 24(3), 329–346.
https://doi.org/10.1177/0269758018773836
Kahraman, C., Onar, S. C., Oztaysi, B., Kahraman, C., Onar, S. C., & Oztaysi, B.
(2015). Fuzzy Multicriteria Decision-Making: A Literature Review. International Journal of Computational Intelligence Systems, 8(4), 637–666.
https://doi.org/10.1080/18756891.2015.1046325
Kang, B., Wei, D., Li, Y., & Deng, Y. (2012a). A Method of Converting Z-number to Classical Fuzzy Number. Journal of Information and Computational Science, 9(3), 703–709.
Kang, B., Wei, D., Li, Y., & Deng, Y. (2012b). Decision Making Using Z-numbers under Uncertain Environment. Journal of Computational Information Systems, 8(7), 2807–2814.
Kang, Y., Park, K., & Kim, H. (2019). Automobile theft detection by clustering owner driver data. 17\(^{th}\) Escar Europe : Embedded Security in Cars
(Konferenzveröffentlichung), (Ivi), 185–199. https://doi.org/10.13154/294-6675 Kanyo, I. N., & Nor, N. M. (2007). Jenayah dan Perbandaran: satu kajian di daerah
timur laut. In Seminar Kebangsaan Geografi 2007 (Vol. 2015, pp. 1–16).
Karimirad, M., Zowghi, M., & Arayesh, B. (2013). A subjective-objective decision making in fuzzy environment. Engineerspress.Com, 92–102.
Karnik, N. N., & Mendel, J. M. (2001). Centroid of a type-2 fuzzy set, 132, 195–220.
Kasim, M. M. (2020). On the Practical Consideration of Evaluators’ Credibility in Evaluating Relative Importance of Criteria for Some Real-Life Multicriteria Problems: An Overview. In Multicriteria Optimization - Pareto-Optimality and
219 Threshold-Optimality.
Kaushik, P., Tyagi, S., Anupam, K., & Thapliyal, B. (2016). An Approach for Selection of Coating Colour Formulation Using TOPSIS Multi Criteria Decision Making Design. TAPPSA Journal, 6, 20–25.
Kennao, P., Lal, D., & Kesharwani, L. (2018). Crime Hotspot mapping and GIS analysis based on Police Station in Allahabad city using Inverse Distance Weighted ( IDW ) interpolation method . International Journal of Research, 05(21), 486–494.
Kim, I. Y., & de Weck, O. (2004). Adaptive Weighted Sum Method for Multiobjective Optimization. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (September), 1–13. https://doi.org/10.1007/s00158-005-0557-6 Kong, V., Weale, R., Blodgett, J., Bruce, J., Laing, G., & Clarke, D. (2018). Spectrum
of injuries resulting from gunshot wounds in car hijacking: A South African experience. Trauma Surgery and Acute Care Open, 3(1), 260.
https://doi.org/10.1136/tsaco-2018-000260
Kruisbergen, E. W., Kleemans, E. R., & Kouwenberg, R. F. (2015). Profitability, Power, or Proximity? Organized Crime Offenders Investing Their Money in Legal Economy. European Journal on Criminal Policy and Research, 21(2), 237–256. https://doi.org/10.1007/s10610-014-9263-5
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017).
A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69(October 2016), 596–609. https://doi.org/10.1016/j.rser.2016.11.191
Lamberti, F., Gatteschi, V., Demartini, C., Pelissier, M., Gomez, A., & Santamaria, V.
(2018). Blockchains Can Work for Car Insurance: Using Smart Contracts and
220
Sensors to Provide On-Demand Coverage. IEEE Consumer Electronics Magazine, 7(4), 72–81. https://doi.org/10.1109/MCE.2018.2816247
Latha, R., & Vetrivelan, P. (2017). TOPSIS based delay sensitive network selection for wireless body area networks. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, 736–739.
https://doi.org/10.1109/ICACCI.2017.8125929
Li, S., & Sun, Q. (2018). Research on Spatial Heterogeneity Impacts of Regional Income Gap and Urbanization on Crime Rate: An Empirical Study Based on Provincial Panel Data in China, 264(Icemaess), 345–350.
https://doi.org/10.2991/icemaess-18.2018.71
Liao, H., & Xu, Z. (2014). Some new hybrid weighted aggregation operators under hesitant fuzzy multi-criteria decision making environment. Journal of Intelligent and Fuzzy Systems, 26, 1601–1617. https://doi.org/10.3233/IFS-130841
Lin, W. R., Wang, Y. H., & Shih, K. H. (2015). A multi-criteria decision making for innovation services attributes: An empirical study of mobile banking system.
Journal of Testing and Evaluation, 43(4), 938–947.
https://doi.org/10.1520/JTE20130220
Linning, S. J., Andresen, M. A., & Brantingham, P. J. (2017). Crime Seasonality:
Examining the Temporal Fluctuations of Property Crime in Cities With Varying Climates. International Journal of Offender Therapy and Comparative Criminology, 61(16), 1866–1891. https://doi.org/10.1177/0306624X16632259 Liu, H.-C., & Liu, T.-S. (2011). A Theoretical Approach to Liu ’ s Generalized
Lambda-Fuzzy Measure. In 2011 IEEE International Conference on Fuzzy Systems June 27-30, 2011, Taipei, Taiwan (pp. 356–363). Taipei: IEEE.
https://doi.org/10.1109/FUZZY.2011.6007548
221
Liu, L., Zhou, J., An, X., Zhang, Y., & Yang, L. (2010). Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China.
Expert Systems with Applications, 37(3), 2517–2521.
https://doi.org/10.1016/j.eswa.2009.08.004
Liu, Y. H., Peng, H. M., Wang, T. L., Wang, X. K., & Wang, J. Q. (2020). Supplier selection in the nuclear power industry with an integrated anp-todim method under z-number circumstances. Symmetry, 12(8), 1–22.
https://doi.org/10.3390/sym12081357
Lochner, L. (2004). Education, work, and crime: A human capital approach.
International Economic Review, 45(3), 811–843. https://doi.org/10.1111/j.0020- 6598.2004.00288.x
Lochner, L., & Moretti, E. (2004). The Effect of Education on Crime: Evidence from Prison Inmates, Arrests, and Self-Reports. American Economic Review.
https://doi.org/10.1257/000282804322970751
Loorbach, D. (2010). Transition management for sustainable development: A prescriptive, complexity-based governance framework. Governance, 23(1), 161–
183. https://doi.org/10.1111/j.1468-0491.2009.01471.x
Luisetto, M. (2019). Mindset Kinetics and Crime Behavior-Quantitative Methods? A New Forensic Quantitative Approach. How Biochemistry, Toxicology, Imaging Principle Can Help in Jurisdictional Settings. Biomedical Journal of Scientific &
Technical Research, 16(2), 11828–11837.
https://doi.org/10.26717/bjstr.2019.16.002810
Luzzati, T., & Gucciardi, G. (2015). A non-simplistic approach to composite indicators and rankings: An illustration by comparing the sustainability of the EU Countries.
Ecological Economics, 113, 25–38.
222
https://doi.org/10.1016/j.ecolecon.2015.02.018
Machin, S., Marie, O., & Vujić, S. (2012). Youth Crime and Education Expansion.
German Economic Review, 13, 366–384. https://doi.org/10.1111/j.1468- 0475.2012.00576.x
Majid, M. (2013). An Empirical Analysis of the Relationship between Unemployment and theft crimes. International Journal of Economics and Financial Issue, 3(1), 50–53.
Makin, D. (2015). DNA and Property Crime Scene Investigation. DNA and Property Crime Scene Investigation. https://doi.org/10.4324/9781315721699
Maleki, H., & Zahir, S. (2013). A comprehensive literature review of the rank reversal phenomenon in the analytical hierarchy process. Journal of Multi-Criteria Decision Analysis, 185–195. https://doi.org/10.1002/mcda.1479
Malik, A. A. (2016). Urbanization and Crime: A Relational Analysis. IOSR Journal Of Humanities And Social Science (IOSR-JHSS, 21(1), 68–74.
https://doi.org/10.9790/0837-21146874
Maluleke, W., & Dlamini, S. (2019). the Prevalence of Organised Cross-Border Crimes in South Africa: a Non-Empirical Statistical Data Analysis on Stock Theft and Hijacking of Motor Vehicles. IInternational Journal of Social Sciences and Humanity, 11(1), 116–145.
Mao, Y., Dai, S., Ding, J., Zhu, W., Wang, C., & Ye, X. (2018). Space–time analysis of vehicle theft patterns in Shanghai, China. ISPRS International Journal of Geo- Information, 7(9). https://doi.org/10.3390/ijgi7090357
Mareschal, B., De Smet, Y., & Nemery, P. (2008). Rank reversal in the PROMETHEE II method: Some new results. 2008 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2008, 2(2), 959–963.
223 https://doi.org/10.1109/IEEM.2008.4738012
Marković, V., Stajić, L., Stević, Ž., Mitrović, G., Novarlić, B., & Radojičić, Z. (2020).
A novel integrated subjective-objective MCDM model for alternative ranking in order to achieve business excellence and sustainability. Symmetry, 12(1).
https://doi.org/10.3390/SYM12010164
Martinelli, F., Mercaldo, F., Orlando, A., Nardone, V., Santone, A., & Sangaiah, A.
K. (2020). Human behavior characterization for driving style recognition in vehicle system. Computers and Electrical Engineering, 83, 1–25.
https://doi.org/10.1016/j.compeleceng.2017.12.050
Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370–396.
Mastrobuoni, G., & Pinotti, P. (2014). Legal status and the criminal activity of immigrants. Available at SSRN 2438682. Kalamazoo. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2438682
Mat Desa, N. H., Jemain, A. A., & Kasim, M. M. (2015). Construction of a Composite Hospital Admission Index using the Aggregated Weights of Criteria. Sains Malaysiana, 44(2), 239–247.
Mat Nawi, F. A., A.Tambi, A. M., Samat, M. F., & Wan Mustapha, W. M. (2020). A Review On the Internal Consistency of A Scale: The Empirical Example of the Influence of Human Capital Investment on Malcom Baldridge Quality Principles in Tvet Institutions. Asian People Journal (APJ), 3(1), 19–29.
https://doi.org/10.37231/apj.2020.3.1.121
Mat Yusof, M., & Jemain, A. A. (2004). Pendekatan kabur untuk mengenalpasti kriteria mempengaruhi pelajar memilih institusi pengajian tinggi awam (IPTA).
Jurnal Teknologi, 40, 59–71.
224
Maznah Mat Kasim, & Abdul Aziz Jemain. (2012). Penglibatan panel penilai dalam mengagregat nilai subjektif asas pangkat bagi menyelesaikan masalah berbilang kriteria. Sains Malaysiana, 42(3), 353–360.
McCord, E. S. (2010). Isolating opportunity from demographic : A Case study of motor vehicle theft in philadelphia. Temple University.
Meloni, O. (2014). Does poverty relief spending reduce crime? Evidence from Argentina. International Review of Law and Economics, 39, 28–38.
https://doi.org/10.1016/j.irle.2014.05.002
Meng, G. K. (2007). Kajian Kes Perogol di Penjara Negeri Kedah dan Perak.
Universiti Sains Malaysia.
Miller, H. V., & Peguero, A. A. (2018). Immigration and Crime. In Routledge Handbook on Immigration and Crime (pp. 1–2).
https://doi.org/10.4324/9781317211563-1
Minh, H. V. T., Avtar, R., Kumar, P., Tran, D. Q., Van Ty, T., Behera, H. C., &
Kurasaki, M. (2019). Groundwater quality assessment using fuzzy-ahp in an Giang Province of Vietnam. Geosciences, 9(8).
https://doi.org/10.3390/geosciences9080330
Mlachila, M., Tapsoba, R., & Tapsoba, S. J. A. (2017). A Quality of Growth Index for Developing Countries: A Proposal. Social Indicators Research, 134(2), 675–710.
https://doi.org/10.1007/s11205-016-1439-6
Moreira, M. P., Dupont, C. J., & Vellasco, M. M. B. R. (2009). PROMETHEE and fuzzy PROMETHEE multicriteria methods for ranking equipment failure modes.
In 15th International Conference on Intelligent System Applications to Power Systems, ISAP ’09. https://doi.org/10.1109/ISAP.2009.5352823
Moser, C., & Felton, A. (2009). The Construction of an Asset Index. Poverty
225 Dynamics: Interdisciplinary Perspectives.
https://doi.org/10.1093/acprof:oso/9780199557547.003.0005
Munir, S., Asghar, N., & Ur Rehman, H. (2017). An Analysis of the Interrelationship among Crime, Misery Index and Institutional Quality: A Case Study of Pakistan.
Journal of Political Studies, 24(1992), 406. Retrieved from
https://www.academia.edu/download/55864230/An_Analysis_of_the_Interrelati onship_among_Crime__Misery_Index_and_Institutional_Quality_A_Case_Stu dy_of_Pakistan.pdf
Murataya, R., & Gutierrez, D. (2013). Effects of weather on crime. International Journal of Humanities and Social Science, 3(10), 71–75.
Murena, F. (2004). Measuring air quality over large urban areas: Development and application of an air pollution index at the urban area of Naples. Atmospheric Environment, 38(36), 6195–6202.
https://doi.org/10.1016/j.atmosenv.2004.07.023
Murray, A. T., McGuffog, I., Western, J. S., & Mullins, P. (2001). Exploratory Spatial Data Analysis Techniques for Examining Urban Crime. British Journal of Criminology, 2(41), 309–329. https://doi.org/10.1093/bjc/41.2.309
Mutiawani, V., Rahmany, S., & Abidin, T. F. (2018). Anti-theft Vehicle Monitoring and Tracking Android Application Using Firebase as Web Service. Proceedings - 2nd 2018 International Conference on Electrical Engineering and Informatics, ICELTICs 2018, (September), 72–77.
https://doi.org/10.1109/ICELTICS.2018.8548842
NǍdǍban, S., Dzitac, S., & Dzitac, I. (2016). Fuzzy TOPSIS: A General View.
Procedia Computer Science, 91(Itqm), 823–831.
https://doi.org/10.1016/j.procs.2016.07.088
226
Nardo, M., & Saisana, M. (2008). OECD/JRC Handbook on constructing composite indicators. Putting theory into practice., 1–16.
Nardo, M., Saisana, M., Saltelli, A., & Tarantola, S. (2005). Tools for composite indicators building. Analysis (Vol. EUR 21682).
https://doi.org/10.1038/nrm1524
Nazatul Norasikin, M. Y. (2010). Dadah : Menggagalkan Fungsi Otak. Retrieved August 31, 2014, from http://www.majalahsains.com/2010/03/dadah- menggagalkan-fungsi-otak/
Németh, B., Molnár, A., Bozóki, S., Wijaya, K., Inotai, A., Campbell, J. D., & Kaló, Z. (2019). Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low-and middle-income countries. Journal of Comparative Effectiveness Research, 8(4), 195–204.
https://doi.org/10.2217/cer-2018-0102
Newburn, T. (2016). Social Disadvantage, Crime, and Punishment. In Social Advantage and Disadvantage (pp. 322–340).
https://doi.org/10.1093/acprof:oso/9780198737070.003.0016
Nguyen, H. T. M. (2019). Do more educated neighbourhoods experience less property crime? Evidence from Indonesia. International Journal of Educational Development, 64, 27–37. https://doi.org/10.1016/j.ijedudev.2018.12.005
Nordin, M. (2018). Does Eligibility for Tertiary Education Affect Crime Rates? Quasi- Experimental Evidence. Journal of Quantitative Criminology, 34(3), 805–829.
https://doi.org/10.1007/s10940-017-9355-8
Orrenius, P., & Zavodny, M. (2019). Do Immigrants Threaten US Public Safety?
Journal on Migration and Human Security, 7(3), 52–61.
https://doi.org/10.1177/2331502419857083
227
Özcan, S. E., & Açıkalın, S. (2015). Relationship between Misery Index and Lottery Games: The Case of Turkey. International Journal of Humanities and Social Science (Vol. 5). Retrieved from
http://www.academia.edu/download/38558838/18.pdf
Ozkul, S., Harmancioglu, N. B., & Singh, V. P. (2000). Entropy-based assessment of water quality monitoring networks. Journal of Hydrologic Engineering, 5, 90–
100.
Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determiningweight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM).
Symmetry, 10(9). https://doi.org/10.3390/sym10090393
Persekutuan Biro Penyiasatan Jenayah. (2013). Laporan Jenayah Curi Kenderaan.
Petrossian, G., & Clarke, R. V. (2012). Export of Stolen Vehicles Across Land Borders.
Retrieved from www.cops.usdoj.gov
Petrović, G., Mihajlović, J., Ćojbašić, Ž., Madić, M., & Marinković, D. (2019).
Comparison of three fuzzy MCDM methods for solving the supplier selection problem. Facta Universitatis, Series: Mechanical Engineering, 17(3), 455–469.
https://doi.org/10.22190/FUME190420039P
Pinotti, P. (2016). Clicking on Heaven’s Door: The Effect of Immigrant Legalization on Crime. Centre for Research and Analysis of Migration Department. Retrieved from http://trends.gmfus.org/immigration/about/.
Piza, E., Feng, S., Kennedy, L., & Caplan, J. (2017). Place-based correlates of Motor Vehicle Theft and Recovery: Measuring spatial influence across neighbourhood context. Urban Studies, 54(13), 2998–3021.
https://doi.org/10.1177/0042098016664299
Portal Data Terbuka. Retrieved October 23, 2020, from https://www.data.gov.my/
228
Prabhu, M., Abdullah, N. N., Ahmed, R. R., Nambirajan, T., & Pandiyan, S. (2020).
Segmenting the manufacturing industries and measuring the performance: using interval-valued triangular fuzzy TOPSIS method. Complex & Intelligent Systems, 6(3), 591–606. https://doi.org/10.1007/s40747-020-00157-0
Ranson, M. (2014). Crime, Weather, and Climate Change. Journal of Environmental Economics and Management, 67(3), 274–302.
https://doi.org/10.1016/j.jeem.2013.11.008
Rashid, T. A., Yusof, F., Jailani, A. I., & Aziz, T. N. R. A. (2018). Dasar-dasar Persefahaman Malaysia dan Indonesia dalam Melindungi Tenaga Kerja Asing.
Journal of Law and Governance, 1(1), 91–100. Retrieved from http://journal.kuim.edu.my/index.php/JLG/article/view/268
Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009
Riaz, M., & Tehrim, S. T. (2020). Cubic bipolar fuzzy set with application to multi- criteria group decision making using geometric aggregation operators. Soft Computing, 24(21), 16111–16133. https://doi.org/10.1007/s00500-020-04927-3 Rocque, M., Posick, C., Barkan, S. E., & Paternoster, R. (2015). Marriage and County- level Crime Rates: A Research Note. Journal of Research in Crime and Delinquency, 52(1), 130–145. https://doi.org/10.1177/0022427814547113 Roghanian, E., Rahimi, J., & Ansari, a. (2010). Comparison of first aggregation and
last aggregation in fuzzy group TOPSIS. Applied Mathematical Modelling, 34(12), 3754–3766. https://doi.org/10.1016/j.apm.2010.02.039
Rossa, S. (2019). Ini 10 Model Kereta ‘Top 10’ Paling Kerap Dicuri Di Malaysia Sepanjang 2019. Retrieved October 22, 2020, from
https://siakapkeli.my/2019/06/30/ini-10-model-kereta-top-10-paling-kerap-
229 dicuri-di-malaysia-sepanjang-2019/
Roszkowska, E., & Wachowicz, T. (2015). Application of fuzzy TOPSIS to scoring the negotiation offers in ill-structured negotiation problems. European Journal of Operational Research, 242(3), 920–932.
https://doi.org/10.1016/j.ejor.2014.10.050
Rouyendegh (Babek Erdebilli), B. D., & Saputro, T. E. (2014). Supplier Selection Using Integrated Fuzzy TOPSIS and MCGP: A Case Study. Procedia - Social
and Behavioral Sciences, 116, 3957–3970.
https://doi.org/10.1016/j.sbspro.2014.01.874
Salari, M., Bagherpour, M., & Wang, J. (2014). A novel earned value management model using Z-number. International Journal of Applied Decision Sciences, 7(1), 97–119. https://doi.org/10.1504/IJADS.2014.058037
Saqlain, M., Jafar, N., Hamid, R., & Shahzad, A. (2019). Prediction of Cricket World Cup 2019 by TOPSIS Technique of MCDM-A Mathematical Analysis.
International Journal of Scientific & Engineering Research, 10(2), 789–792.
Savino, J. O., & Turvey, B. E. (2018). False Reports of Theft. In False Allegations (pp. 109–134). https://doi.org/10.1016/b978-0-12-801250-5.00006-9
Savitz, L. D. (1959). Automobile theft. The Journal of Criminal Law, Criminology and Police Science, 50(2), 132–143.
Senvar, O., Otay, I., & Bolturk, E. (2016). Hospital Site Selection via Hesitant Fuzzy TOPSIS. IFAC-PapersOnLine, 49(12), 1140–1145.
https://doi.org/10.1016/j.ifacol.2016.07.656
Sevkli, M. (2010). An application of the fuzzy ELECTRE method for supplier selection. International Journal of Production Research, 48(12), 3393–3405.
https://doi.org/10.1080/00207540902814355
230
Shahila Bhanu, M., & Velammal, G. (2015). Operations on Zadeh’s Z-numbers. IOSR Journal of Mathematics, 11(3), 2278–5728. https://doi.org/10.9790/5728- 11358894
Shih, H.-S., Shyur, H.-J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7), 801–813.
Retrieved from
http://www.sciencedirect.com/science/article/pii/S0895717706003025
Sidhu, S. A. (2005). The rise of crime in Malaysia: An academic and statistical analysis. Journal of the Kuala Lumpur Royal Malaysia Police College, (4), 1–28.
Siksnelyte-Butkiene, I., Zavadskas, E. K., & Streimikiene, D. (2020). Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies. https://doi.org/10.3390/en13051164
Silverman, L. P., & Spruill, N. L. (1977). Urban crime and the price of heroin. Journal of Urban Economics, 4, 80–103. https://doi.org/10.1016/0094-1190(77)90032-8 Singh, M., & Pant, M. (2020a). A review of selected weighing methods in MCDM
with a case study. International Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-020-01033-3
Singh, M., & Pant, M. (2020b). A review of selected weighing methods in MCDM with a case study. International Journal of System Assurance Engineering and Management, 23(8), 1449. https://doi.org/10.1007/s13198-020-01033-3
Spenkuch, J. (2011). Understanding the impact of immigration on crime. American Law and Economics Review. Retrieved from
http://aler.oxfordjournals.org/content/early/2013/09/13/aler.aht017.short
Spicer, V., Song, J., Brantingham, P., Park, A., & Andresen, M. A. (2016). Street profile analysis: A new method for mapping crime on major roadways. Applied
231 Geography, 69(December 2017), 65–74.
https://doi.org/10.1016/j.apgeog.2016.02.008
Steffensmeier, D., & Allan, E. (1996). Gender and Crime: Toward a Gendered Theory of Female Offending. Annual Review of Sociology, 22(1), 459–487.
https://doi.org/10.1146/annurev.soc.22.1.459
Stretesky, P. B., Long, M. A., McKie, R. E., & Aryee, F. A. (2018). Does oil and gas development increase crime within UK local authorities? Extractive Industries and Society, 5(3), 356–365. https://doi.org/10.1016/j.exis.2018.03.006
Sun, C., Li, S., & Deng, Y. (2020). Determining weights in multi-criteria decision making based on negation of probability distribution under uncertain environment. Mathematics, 8(2), 1–15. https://doi.org/10.3390/math8020191 Suresh, G., & Tewksbury, R. (2013). Locations of Motor Vehicle Theft and Recovery.
American Journal of Criminal Justice, 38(2), 200–215.
https://doi.org/10.1007/s12103-012-9161-7
Taft, D. R., & Sutherland, E. H. (1947). Principles of Criminology. American Sociological Review. https://doi.org/10.2307/2086971
Tang, C. F., & Lean, H. H. (2009). New evidence from the misery index in the crime function. Economics Letters, 102(2), 112–115.
https://doi.org/10.1016/j.econlet.2008.11.026
Tang, M., & Liao, H. (2021). From conventional group decision making to large-scale group decision making: What are the challenges and how to meet them in big data era? A state-of-the-art survey. Omega (United Kingdom).
https://doi.org/10.1016/j.omega.2019.102141
Tang, M., Liao, H., Xu, J., Streimikiene, D., & Zheng, X. (2020). Adaptive consensus reaching process with hybrid strategies for large-scale group decision making.