• Tiada Hasil Ditemukan

FORMULATION AND DEVELOPMENT OF ‘BERANGAN’ PEEL JELLY AND

N/A
N/A
Protected

Academic year: 2022

Share "FORMULATION AND DEVELOPMENT OF ‘BERANGAN’ PEEL JELLY AND "

Copied!
15
0
0

Tekspenuh

(1)

FORMULATION AND DEVELOPMENT OF ‘BERANGAN’ PEEL JELLY AND

ITS ANTIOXIDANT PROPERTIES

NOOR AZWANI MOHD RASIDEK

MASTER OF SCIENCE

2014

(2)

Formulation and Development of ‘Berangan’ Peel Jelly and its Antioxidant Properties

by

Noor Azwani Mohd Rasidek

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Agro Based Industry UNIVERSITI MALAYSIA KELANTAN

2014

(3)

THESIS DECLARATION

I hereby certify that the work embodied in this thesis is the result of the original research and has not been submitted for a higher degree to any other University or Institution.

OPEN ACCESS I agree that my thesis is to be made immediately available as hardcopy or on-line open access (full text).

EMBARGOES I agree that my thesis is to be made available as hardcopy or on-line open access (full text) for a period approved by the Post Graduate Committee.

CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*

RESTRICTED (Contains restricted information as specified by the organization where research was done)*

I acknowledge that Universiti Malaysia Kelantan reserves the right as follows.

1. The thesis is the property of University Malaysia Kelantan.

2. The library of Universiti Malaysia Kelantan has the right to make copies for the purpose of research only.

3. The library has the right to make copies of the thesis for academic exchange.

Signature Signature of Supervisor

IC/Pasport No. Name of Supervisor

Date: Date:

(4)

ACKNOWLEDGEMENTS

BISMILLAHIRRAHMANIRRAHIM…In the name of Allah Taala, The Most Gracious, with the God’s help and His amazing grace, I’m finally completing this dissertation after going through the two years of challenging and stressful period. Nevertheless, this period is so meaningful because it gives me an opportunity to step foot into the realm of true research work. This research has been develop and implemented with assistance of several generous individuals. I would like to take this opportunity to express my appreciation to their efforts and kindness.

First and foremost, I thank my chairperson supervisory committee, Dr.

Mariam Firdhaus Mad Nordin for her invaluable guidance, suggestions, encouragement and help throughout the course of this study. I also wish to express my heartfelt appreciation and thanks to Associate Prof. Ir. Dr. Norazah Abd Rahman, from Faculty of Chemical Engineering, UiTM, one of the supervisory committee members, who kindly provided me with her knowledge, guidance and advice in carrying out this study as well as completion of this thesis.

I also would like to million thanks to all staffs members at Post Harvest Laboratory, especially to En. Suhaimi Omar from Faculty of Agro Based Industry, UMK, person that I consider the best assistant ever. Deeply appreciated goes to all lab staffs at Food Engineering Laboratory, UiTM, who those are willing gave me the assistance, cooperation and a facility during my research works. Not forgot to all my truly friends which act as a spirits around me and I’d really appreciated our memorable moments.

Last but not least, I would like to express my deepest gratitude to my beloved family especially to Dato’ Azham Zamiri Bin Mohamad Satar for their unstinting love, endless encouragement, concern, patience and sacrifices which had helped me in undertaking and completing this study. I could not ask for a better one as without them, my study would have never been possible. ALHAMDULILLAH!

(5)

TABLE OF CONTENTS

PAGE

THESIS DECLARATION i

ACKNOWLEDGMENT ii

TABLE OF CONTENTS iii

LIST OF TABLES iv

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

LIST OF SYMBOLS xi

ABSTRAK xii

ABSTRACT xiii

CHAPTER 1 INTRODUCTION

1.1 General Background 1

1.2 Problem Statements 3

1.3 Objectives of Research 3

1.4 Significance of Research 4

1.5 Scope of Research 5

CHAPTER 2 LITERATURE REVIEW

2.1 Banana Overview and its Application 6

2.1.1 Origin 8

2.1.2 Morphology 8

2.1.3 ‘Berangan Banana’ 9

2.1.4 Nutritional Values of Bananas 10

2.1.5 Banana Peel as a Functional Agricultural Byproduct 11

2.2 Harvest and Post Harvest 12

2.2.1 Plant Sources 13

2.2.2 Sampling and Storing of Plant Material 14

2.2.3 Fruit Maturation 14

(6)

2.2.4 Assessment of Peel Color Changes 15

2.3 Fruit Jelly 16

2.3.1 Jelly without added Pectin 17

2.3.2 Jelly with added Pectin 17

2.3.3 Banana Peel High of Pectin Sources 18

2.4 Implication of the Ingredient 19

2.4.1 Natural Pectin 21

2.4.2 Fruit Pectin Juice 23

2.4.3 Sugar 23

2.4.4 Total Soluble Solid and Brix 24

2.4.5 Citric Acid 25

2.4.6 pH value 25

2.4.7 Cooking Time 26

2.4.8 Temperature 27

2.4.9 Pectin Properties and Gelling Mechanism 27

2.5 Rheology Behavior 30

2.5.1 Types of Fluid Flow Behaviour 31

2.5.2 Flow and Functional for Rheological Properties 33 2.5.3 Interpreting and Analyzing the Rheological Graph 36

2.5.4 Properties of Jelly Systems 37

2.6 Antioxidant Sources 40

2.6.1 Total Phenolics Contents 42

2.6.2 DPPH Radical Scavenging Assay 43

CHAPTER 3 MATERIALS AND METHODS

3.1 Outline of Research 46

3.2 Materials and Instruments 47

3.3 Chemicals 48

3.4 Sample Preparation 48

3.4.1 Harvest and Post Harvest Routine 49

3.4.2 Preparation of ‘Berangan’ Peel Powder 49

(7)

3.4.3 Preparation of ‘Berangan’ Peel Extract 50 3.4.4 Preparation of ‘Berangan’ Peel Jelly 51 3.4.5 Preparation of ‘Berangan’ Peel Powder Jelly 52 3.4.6 Preliminary Studies of ‘Berangan’ Peel Jelly 53

3.4.7 Design of Experiment 53

3.5 Estimation of Pectin Content 54

3.6 Rheology Behavior Analysis 55

3.6.1 Preparation of ‘Berangan’ Peel Jelly 55

3.6.2 Rheological Measurement 56

3.7 Antioxidant Properties 57

3.7.1 Preparation of Phenolic Extracts 57

3.7.2 Total Phenolic Content Assay 58

3.7.3 DPPH Radical Scavenging Assay 59

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Overview Data 60

4.1.1 Post Harvest Observation 61

4.2 Assessment Stage of Banana Ripening 62

4.3 Estimation of Pectin Yield 66

4.4 Implications of Ingredients in Jelly Formulation 67 4.4.1 A Series of ‘Berangan’ Peel Extracts 67 4.4.2 Treatment of ‘Berangan’ Peel Jellies 68 4.4.3 Implication of Sugar, Citric Acid and Cooking Time 69

4.4.4 Response Optimization Plot 73

4.4.5 Visual Observation of Jelly 75

4.5 Rheology Behavior 77

4.5.1 Flow Behaviour 77

4.5.2 Non-Newtonian Model 79

4.5.3 Predictive Models 80

4.5.4 Comparison of selected Model 83

4.5.5 Apparent Viscosity 87

(8)

4.5.6 Viscoelastic Properties of ‘Berangan’ Peel Jelly 88

4.6 Antioxidant Properties 92

4.6.1 Total Phenolic Contents 92

4.6.2 Antioxidant Activity 96

4.6.3 Correlation of Phenolic Content and Antioxidant Activity 99 CHAPTER 5 CONCLUSION

5.1 General Summary and Conclusion 102

5.2 Recommendation for Future Research 104

REFERENCES 105

APPENDIX A 116

APPENDIX B 119

APPENDIX C 124

LIST OF PUBLICATIONS 128

(9)

LIST OF TABLES

NO. PAGE

2.1 Classification of gel systems 38

3.1 Concentration of ‘Berangan’ peel extracts 51

3.2 ‘Berangan’ peel jellies with collected responses 55 4.1 Details of ‘Berangan’ in forms of peel, powder and extract 60

4.2 Ripening storage of ‘Berangan’ banana 61

4.3 Ripening changes of ‘Berangan’ banana peels 63

4.4 A series of ‘Berangan’ peel extracts 68

4.5 pH treatment for ‘Berangan’ peel jellies 69

4.6 Preliminary formulation of ‘Berangan’ peel jellies 72 4.7 Formulation batches of ‘Berangan’ peel jellies 73 4.8 Color appearances of ‘Berangan’ peel jellies 76

4.9 Parameters of Newtonian Model 78

4.10 Parameters of selected models for ‘Berangan’ peel jellies 86 at 25ºC

4.11 Total phenolic contents of ‘Berangan’ peel powder and 95 jellies

4.12 Scavenging activity of ‘Berangan’ peel powder and jellies 98 4.13 IC50 value of ‘Berangan’ peel powder and jellies 99

(10)

LIST OF FIGURES

NO. PAGE

2.1 Flow chart of various processed and unprocessed products 8 derived from banana (Source: Mohapatra et al., 2011)

2.2 ‘Berangan’ banana (Source: Noradlin, 2008) 10

2.3 Color chart of banana ripening stage 16

2.4 Pectin classification (Source: Silvateam, 2014) 29 2.5 Mechanism of gelation (Source: Silvateam, 2014) 30 2.6 Apple pectin (left) and classic citrus pectin (right) 40

(Sources: Herbstreith & Fox, 2004)

3.1 Flowchart of research methodology 46

3.2 Simple process flow of jelly formulation 51

4.1 Optimization plot of ‘Berangan’ peel jelly 74 4.2 A rheogram of ‘Berangan’ peel jelly at 25°C 78 4.3 Experimental flow behavior of ‘Berangan’ peel jelly 79 4.4 Flow curves for 68ºBrix of peel jelly at 25ºC 81 4.5 Flow curves for 70ºBrix of peel jelly at 25ºC 82 4.6 Flow curves for 71.2ºBrix of peel jelly at 25ºC 82 4.7 Flow curves for 72ºBrix of peel jelly at 25ºC 83 4.8 Flow curves for 76ºBrix of peel jelly at 25ºC 83 4.9 Fitted flow curves of 68ºBrix ‘Berangan’ peel jelly at 25ºC 84 4.10 Fitted flow curves of 70ºBrix ‘Berangan’ peel jelly at 25ºC 85 4.11 Fitted flow curves of 71.2ºBrix ‘Berangan’ peel jelly at 25ºC 85 4.12 Fitted flow curves of 72ºBrix ‘Berangan’ peel jelly at 25ºC 85 4.13 Fitted flow curves of 76ºBrix ‘Berangan’ peel jelly at 25ºC 86 4.14 Changes in apparent viscosity as shear rate increases for 88

‘Berangan’ peel jelly at different TSS and pH

4.15 Plot of G’ versus ω for jelly sample at 25°C 91

(11)

4.16 Plot of G” versus ω for jelly sample at 25°C 91 4.17 Plot of ɳ* versus ω for jelly sample at 25°C 92 4.18 Total phenolic contents in ‘Berangan’ peel powder and jellies 95 4.19 Absorbance of ‘Berangan’ peel powder and jellies 97 4.20 Evaluation of IC50 for ‘Berangan’ peel powder and jellies 98 4.21 Linear correlation between DPPH IC50 and total phenolic 101

content

(12)

LIST OF ABBREVIATIONS

AEAC Ascorbic Acid Equivalent Antioxidant Capacity

AO Antioxidant

AA Ascorbic Acid

BPE Berangan Peel Extract BPP Berangan Peel Powder BPJ Berangan Peel Jelly

BPPJ Berangan Peel Powder Jelly DM Degree of Methylation DE Degree of Esterification

d.b Dry Basis

d.w Dry Weight

DOE Design Of Experiment

DPPH 1,1 diphenyl-2-picrylhydrazyl

GA Gallic Acid

GAE Gallic Acid Equivalent

HM High Methoxyl

LM Low Methoxyl

LVR Linear Viscoelastic Region

mg Miligram

min Minute

Pa Pascal

RSD Response Surface Design SA Scavenging Activity TPC Total Phenolic Content TSS Total Soluble Solid

UV Ultra-Violet

(13)

LIST OF SYMBOLS

ɳ Viscosity

ɳ* Complex Viscosity ɳapp Apparent Viscosity

% Percent

°C Degree Celsius

° Brix Degree Brix

Δ Phase Angle

G’ Loss Modulus

G” Storage Modulus

g Gram

Hz Hertz

h Hour

µm Micron

γ Shear Rate

σ Shear Stress

μg Microgram

μm Micrometer

µl Microlitre

ml Millilitre

mg Miligram

mm Millimetre

n Sample size

s Second

rads-1 Radian Persecond

(14)

Formulation and Development of ‘Berangan’ Peel Jelly and its Antioxidant Properties

ABSTRACT

This thesis presents the formulation and development of ‘Berangan’ peels to form dessert jelly product with its antioxidant properties. The jelly formulation using ‘Berangan’

peel powder (BPP), formulated without additive any pectin sources. The ‘Berangan’ peel jelly (BPJ) designated under two levels full of factorial which generated of sugar amount (19.00 to 19.30 g) and citric acid (0.207 to 0.209 g) and responded to its total soluable solid, TSS (63.8 to 80.4ºBrix) and pH (3.21 to 3.38) for each BPJ formulation. The targeted response at pH 3.3, TSS 72ºBrix in response optimizer has verified the local solution with 0.846 of composite desirability. Meanwhile, the predicted responses of pH and TSS denotes to desirability at 0.747 and 0.959 respectively. Both predicted response indicates a relatively good consistency of BPJ. The predictive flow model resulted in a reasonably poor fitting to Power Law with R2 is 0.991 to 0.994 and flow behavior index, n is 0.224 to 0.779. The Herschel-Bulkey presented n values at 0.95 to 4.153 which indicated shear thinning and shear thickening behavior in nature. Otherwise, the Casson model, they comprised of R2 values at 0.999 to 1.000.There is almost no yield stress observed in BPJ at low TSS, while at high TSS, the value of yield stress is 0.2. Thus, it concludes that Casson model fits well at higher concentration. The frequency sweep studies at 25ºC which the G’

considered as an indicator of gel rigidity, with BPJ have a low G' value, that derived from determining the texture and quality of jelly itself as a naturally pectin weak behavior.

When the BPJ exposed to a large stress, the gel network is easily broken, thus accounted to a low G' value. So, this BPJ is likely considered as semisolid jelly in their group of weak gel. The antioxidant analysis is investigated based on total phenolic content (TPC) and DPPH-free radical scavenging activity (SA), whereby at 0.1 to 10 mg/ml, the TPC of BPP derived from 92 to 602 mg GAE/100 g (d.b), while the TPC of developed BPJ, 5% BPJ, 6% BPJ and 7% BPJ denoted from 30 to 48 mg GAE/100g, 29 to 47 mg GAE/100g and 29 to 46 mg GAE/100g respectively. Moreover, the BPP at 0.1 mg/ml with (IC50=1.56 mg/ml), shows a low SA at 20%. While at 10 mg/ml, the BPP shows greatest SA until it reaches 89%. In contrast at 0.1 mg/ml, the 5% BPJ (IC50 = 3.95 mg/ml), 6% BPJ (IC50 = 3.45 mg/ml) and 7% BPJ (IC50 =3.11 mg/ml) remarked the SA at 7% to 11%. Otherwise, at 10 mg/ml it remarks as increasing in SA from 74% to 84%. Hence, respect of high SA or percent inhibition and with low IC50 value for BPP and BPJ, both of them might have a potential as an optional antioxidant sources. Therefore, this study has achieved that

‘Berangan’ peels having a good potential for jelly product and with its antioxidant value.

(15)

Formulasi dan Pembangunan Jeli Kulit Pisang ‘Berangan’

Dan Ciri Antioksidannya

ABSTRAK

Tesis ini membentangkan formulasi dan pembangunan kulit pisang bagi menghasilkan produk pencuci mulut iaitu jeli serta nilai antioksidannya. Jeli kulit pisang

‘Berangan’ diformulasikan dalam rekabentuk eksperimen jenis dua faktorial iaitu menggunakan kuantiti gula antara 19.00 g sehingga 19.30 g dan asid sitrik, 0.207 g sehingga 0.209 g. Tindakbalas optimasi respons disasarkan pada pH 3.3 dan pepejal larut 72ºBrix. Kedua-dua tindak balas yang diramal menunjukkan ciri konsisten yang agak baik dalam jeli kulit pisang yang dihasilkan. Model aliran yang diramal adalah munasabah terhadap jeli, dimana ianya kurang sesuai bagi model ‘Power Law’ iaitu R2 antara 0.991 sehingga 0.994 dan indeks tingkah laku aliran, n adalah 0.224 sehingga 0.779. Manakala, nilai n bagi model ‘Hershey-Bulkey’ adalah 0.95 sehingga 4.153 yang secara semulajadi menunjukkan tingkah laku penipisan ricih dan penebalan ricih. Sebaliknya, model

‘Casson’ berkait rapat dengan kesan taburan saiz zarah, terdiri dari nilai R2 antara 0.999 sehingga 1.000. Oleh itu, model ‘Casson’ adalah lebih bersesuaian untuk kepekatan pepejal larut yang tinggi. Kajian frekuensi sapu menunjukkan perubahan dalam modulus simpanan, G’, kehilangan, G” dan kelikatan, ɳ* sebagai fungsi frekuensi, ω pada 25ºC.

Nilai G’ adalah penunjuk ketegaran iaitu dengan jeli kulit pisang menyumbang nilai G’

yang rendah menunjukkan pektin jeli bersifat lemah secara semula jadi. Sifat pektin jeli akan berubah apabila terdedah kepada tekanan yang besar, rangkaian jeli ini mudah pecah, dan menyumbang kepada nilai G’ yang rendah. Oleh itu, jeli kulit pisang ini mungkin dianggap sebagai jeli semisolid dalam kumpulan gel yang lemah. Analisis aktiviti antioksidan disiasat berdasarkan kepada jumlah kandungan fenolik dan aktiviti memerangkap radikal bebas-DPPH, di mana pada 0.1 hingga 10 mg/ml, kandungan fenolik bagi serbuk kulit pisang adalah 92 sehingga 603 mg GAE/100g (d.b), manakala 5% jeli , 6% jeli dan 7% jeli direkodkan antara 29 sehingga 48 mg GAE/100g. Pada kepekatan rendah bagi serbuk kulit pisang, dengan (IC50 = 1.56 mg/ml), menunjukkan aktiviti memerangkap radikal bebas yang rendah iaitu 20% dan pada kepekatan yang tinggi menunjukkan aktiviti memerangkap adalah lebih tinggi sehingga mencapai 89%.

Sebaliknya aktiviti memerangkap pada kepekatan yang sama bagi 5% jeli (IC50 = 3.95 mg/ml), 6% jeli (IC50 = 3.45 mg/ml) dan 7% jeli (IC50 = 3.11 mg/ml) menyumbang antara 7% sehingga 11%. Sebaliknya, pada kepekatan tinggi menyumbang 74% sehingga 84%

aktiviti memerangkap radikal bebas. Oleh itu, nilai aktiviti memerangkap radikal bebas yang tinggi atau peratus perencatan serta dengan nilai IC50 yang rendah bagi serbuk kulit pisang dan jeli kulit pisang, kedua-dua mereka mempunyai potensi sebagai sumber antioksidan pilihan. Dengan itu, kajian ini telah mencapai bahawa kulit pisang ‘Berangan’

mungkin mempunyai potensi yang baik untuk produk jeli serta dengan nilai antioksidannya.

Rujukan

DOKUMEN BERKAITAN

Kajian ini mendapati kelapan-lapan spesies terpilih ekstrak etanol daripada famili Piperaceae mempunyai aktiviti sitotoksik terhadap sel HepG2 kerana nilai bacaan IC 50

Nilai laju aliran bebas yang dianggarkan oleh Model Greenberg (Terubahsuai) adalah tinggi disebabkan nilai laju tertinggi dalam hubungan laju-ketumpatan telah digunakan

Hydrolisat yang dihasilkan oleh pepsin menunjukan aktiviti perencatan yang paling tinggi dengan IC 50 4.93 mg/mL, manakala 5.75 mg/mL dan 9.54 mg/mL telah ditunjuk oleh

The main objectives of this study were to develop banana peel fiber jelly by incorporating the banana peel fiber extract in the jelly formulation, to determine total dietary fiber

Manakala kajian yang dilakukan oleh Kamil Md Idris (2002) terhadap nilai agama mendapati semakin tinggi nilai agama seseorang itu semakin rendah kepatuhannya dalam

Rajah 4.12 Perbandingan min nilai peratus aktiviti enzim LDH dalam titisan sel HepG2 ke atas Archidendron jiringa mengikut kepekatan berbeza dan ekstrak air didihan kulit

Dalam satu kajian lain, sobatum, sebatian tulen daripada Solanum trilobatum, yang mempunyai potensi menjadi agen antikanser telah dibuktikan tidak membawa sebarang kesan

(i) Jelaskan bagi setiap kaedah pempolimeran radikal bebas yang disebut. (ii) Bagi setiap kaedah terdapat kelebihan