• Tiada Hasil Ditemukan

Development of the four-cylinder moving mesh model for A 1.6 litre four-stroke direct-injection engine

N/A
N/A
Protected

Academic year: 2022

Share "Development of the four-cylinder moving mesh model for A 1.6 litre four-stroke direct-injection engine"

Copied!
15
0
0

Tekspenuh

(1)

$EVELOPMENTOFTHE&OURCYLINDER-OVING-ESH-ODELFORALITRE&OURSTROKE

$IRECTINJECTION%NGINE

3HAHRIR!BDULLAH7ENDY(ARDYONO+URNIAWAN+AMARUZZAMAN3OPIANAND:ULKImI-OHD.OPIAH

$EPARTMENTOF-ECHANICALAND-ATERIALS%NGINEERING 5NIVERSITI+EBANGSAAN-ALAYSIA

5+-"ANGI3ELANGOR -ALAYSIA

%MAILSHAHRIR ENGUKMMY

2ECEIVED$ATETH!UGUST !CCEPTED$ATETH-ARCH

!"342!#4

4HE DESIGN OF A MODERN INTERNAL COMBUSTION ENGINE REQUIRES THE USE OF ADVANCED ANALYSIS AND DEVELOPMENT TOOLS TO CARRY OUT AN INDEPTH INVESTIGATION ON INTERNAL COMBUSTION PROCESS AND COMPUTATIONALmUIDDYNAMICS#&$ SIMULATIONBYUSINGHIGHPERFORMANCECOMPUTERS)NTHISWORKTHE ALGORITHMFORMOVINGORDEFORMEDMESHFORALITREFOURCYLINDERFOURSTROKEDIRECTINJECTIONENGINE HASBEENDEVELOPED4HISTYPEOFMESHISREQUIREDFORTRANSIENTSIMULATIONOFmUIDmOWANDCOMBUSTION PROCESSINSIDETHECOMBUSTIONCHAMBEROFANINTERNALCOMBUSTIONENGINE4HISMESHDEFORMSWITHTHE MOVEMENTOFINTAKEANDEXHAUSTVALVESASWELLASPISTON(ENCETHEPURPOSEOFTHEWORKISTOVERIFYTHE MOVINGMESHALGORITHMANDTOESTABLISHTHECORRECTMESHCONlGURATIONATANYCRANKANGLE4HESIMULATION COVERSTHEFULLENGINECYCLECONSISTINGOFINTAKECOMPRESSIONPOWERANDEXHAUSTSTROKESANDTHEORDER OFPISTONMOTIONISSETACCORDINGTOTHElRINGORDEROFTHESELECTEDENGINE4HEALGORITHMESTABLISHED DElNESEVENTSINWHICHANYOFTHEDESIGNATEDENGINECOMPONENTMOVESINTERMSOFTIMEANDDURATION OFOCCURRENCE4HEVERIlCATIONOFTHEALGORITHMWASPERFORMEDFORTHEWHOLEFOURSTROKECYCLEOF² CRANKANGLESWHERETHEPOSITIONSOFTHEINTAKEVALVEEXHAUSTVALVECYLINDERANDPISTONWEREUPDATED ACCORDINGLYWITHRESPECTTOCRANKANGLE4HElNALISEDALGORITHMANDMESHCANBEUSEDTOSIMULATETHE INCYLINDERmUIDmOWANDINTERNALCOMBUSTIONPROCESSFORTHEFULLENGINECYCLE

+EYWORDS #OMPUTATIONAL mUID DYNAMICS MOVING MESH DIRECTINJECTION FOURSTROKE CYCLE INTERNAL COMBUSTIONENGINE

!"342!+

2EKABENTUKENJINPEMBAKARANDALAMANMODENMEMERLUKANPENGGUNAANANALISISTERMAJUDANPERALATAN PEMBANGUNANUNTUKMENJALANKANKAJIANYANGMENDALAMTERHADAPPROSESPEMBAKARANDALAMANDAN SIMULASIDINAMIKBENDALIRKOMPUTERAN#&$ DENGANMENGGUNAKANKOMPUTERBERPRESTASITINGGI$ALAM KAJIANINIALGORITMAUNTUKJEJARINGBERGERAKATAUBERUBAHBENTUKDARIPADAENJINSUNTIKANTERUSEMPATLEJANG EMPATSILINDERLITERDIBANGUNKAN*ENISJEJARINGINIDIPERLUKANUNTUKSIMULASITIDAKMANTAPDARIPADA ALIRANBENDALIRDANPROSESPEMBAKARANDIDALAMKEBUKPEMBAKARANSEBUAHENJINPEMBAKARANDALAM

*EJARINGINIBERUBAHBERSAMAANDENGANPERGERAKANINJAPPENGAMBILANDANEKZOSSERTAOMBOH/LEHITU

(2)

OBJEKTIFKAJIANIALAHUNTUKMENGESAHKANALGORITMAJEJARINGBERGERAKDANMEWUJUDKANKONlGURASI JEJARINGYANGTEPATPADASEBARANGSUDUTENGKOL3IMULASIYANGDILAKUKANMELIPUTIKITARENJINPENUH YANGTERDIRIDARIPADALEJANGPENGAMBILANMAMPATANKUASADANEKZOSSERTAATURANPERGERAKANOMBOH DISETKANMENGIKUTURUTANNYALAANUNTUKENJINBERKENAAN!LGORITMAYANGDIBANGUNKANMENDElNISIKAN PERISTIWAPERISTIWADIMANASEBARANGKOMPONENENJINBERKENAANBERGERAKDALAMUNGKAPANMASADAN TEMPOHURUTAN0ENGESAHANALGORITMADIJALANKANUNTUKKESELURUHANKITAREMPATLEJANGDARIPADA² SUDUTENGKOLDIMANAKEDUDUKANKEDUDUKANDARIPADAINJAPPENGAMBILANINJAPEKZOSSILINDERDAN OMBOHDIKEMASKINIKANMENGIKUTSUDUTENGKOL!LGORITMADANJEJARINGAKHIRDAPATDIGUNAKANUNTUK MENSIMULASIKANALIRANBENDALIRDALAMSILINDERDANPROSESPEMBAKARANDALAMUNTUKKITARENJINPENUH +ATAKUNCI$INAMIKBENDALIRKOMPUTERANJEJARINGBERGERAKSUNTIKANTERUSKITAREMPATLEJANGENJIN PEMBAKARANDALAM

).42/$5#4)/.

)TISWELLKNOWNTHATRECIPROCATINGENGINESCAN PRODUCE MANY COMPLEX CHARACTERISTICS AND PHENOMENAWHICHPERHAPSMORECOMPLEXTHAN ANY OTHER MECHANICAL DEVICES %VEN THOUGH THE INTERNAL COMBUSTION )# TECHNOLOGY HAS DEVELOPED TREMENDOUSLY OVER THE LAST FEW DECADES THERE ARE STILL AREAS OF IMPROVEMENT WHICHCANBEEXPLORED7ITHSTRINGENTREGULATIONS ANDEMISSIONCONTROLPOLICIESSTIFFCOMPETITION AMONG CAR MANUFACTURERS AND INCREASING CUSTOMERSDEMANDSAUTOMOTIVEENGINEERSHAVE BEENSTRIVEDTODESIGNINCREASINGLYSOPHISTICATED SOLUTIONSINORDERTOACHIEVEBETTERPERFORMANCE ANDCLEANERENGINES4OCOPEWITHTHEDEMANDS CONTROL OVER COMBUSTION PROCESS IS A POPULAR APPROACHUSEDBYMANYRESEARCHERSNOWADAYS (OWEVERDUETOTHECOMPLEXITYOFTHE)#PROCESS ITSELFCAREFULSTUDYHASTOBECONDUCTEDONANY NEWINNOVATIONINTRODUCEDONTHEENGINEINORDER TOMAKESURETHATTHEENGINEISMARKETABLE .OWADAYSTHEDEVELOPMENTOFAN)#ENGINE REQUIRESTHEUSEOFADVANCEDANALYSISANDTOOLS SUCH AS COMPUTERAIDED DESIGN #!$ AND COMPUTERAIDED ENGINEERING #!% SOFTWARE )N ADDITION TO THE EXPERIMENTAL WORK CARRIED OUT ON ENGINE TEST RIGS NUMERICAL SIMULATION VIA #!% SOFTWARE SUCH AS COMPUTATIONAL mUID DYNAMICS #&$ SOFTWARE CAN BE USED TO ANALYSEANDTOOPTIMISETHEENGINE)NORDERTO ACCURATELYSIMULATETHE)#PROCESSTHEMESHHAS TOBECREATEDINSUCHAWAYTHATITCANDEFORM ACCORDING TO SEVERAL MOVING COMPONENTS THAT FORMTHECOMBUSTIONCHAMBERNAMELYTHEPISTON CROWNANDTHEINTAKEANDEXHAUSTVALVES)NTHIS CASEBOUNDARIESOFTHECOMPUTATIONALDOMAIN HAVE TO BE ALLOWED TO MOVE WHICH EVENTUALLY SHRINKOREXPANDTHEmUIDVOLUMEINACCORDANCE TOCRANKANGLE

)N FLUID FLOW CALCULATIONS THE UTILISATION OF MOVING COORDINATES IS ABSOLUTELY ESSENTIAL ESPECIALLY IN FLOWS WITH MOVING BOUNDARIES AS OCCURRED IN )# ENGINE4HE SOLUTION OF SUCH PROBLEMS IS BEST CARRIED OUT THROUGH THE CONSERVATION EQUATIONS IN A NON%ULERIAN COORDINATEFRAME$UETOTHEMOVEMENTOFTHE COORDINATE SYSTEM AN ADDITIONAL EQUATION IS REQUIRED TO BE SATISFIED SIMULTANEOUSLY WITH THEOTHERCONSERVATIONEQUATIONS4HISEQUATION RELATES THE CHANGE OF THE ELEMENTARY CONTROL VOLUMETOTHECOORDINATEFRAMEVELOCITYANDIS CALLEDlRSTLYBY4RULIOAND4RIGGER ASTHE SPACECONSERVATIONLAW4HEYHAVEINCLUDEDTHE SPACECONSERVATIONLAWEQUATIONTOGETHERWITH THE MASS MOMENTUM AND ENERGY TRANSPORT EQUATIONS IN THEIR FUNDAMENTAL EQUATIONS OF MOTION FOR NUMERICAL SOLUTIONS ON MOVING MESHES AND USED IT FOR ONEDIMENSIONAL mOW CALCULATIONS (OWEVER THE NECESSITY OF SOLVING THIS EQUATION SIMULTANEOUSLY WITH THE OTHER CONSERVATION WAS NOT RECOGNIZED UNTIL IT WAS REDISCOVERED BY4HOMAS AND ,OMBARD AND$EMIRDäIC 4RULIOAND4RIGGER AND 4HOMAS AND ,OMBARD USED THE SPACE CONSERVATION LAW EQUATION WITH A lNITE DIFFERENCE SOLUTION METHOD7ARSI ALSO RECOGNISETHESPACECONSERVATIONLAWEQUATIONS AS THE FUNDAMENTAL EQUATION FOR NONSTEADY COORDINATES4HECONCEPTOFMOVINGMESHWITH THEINTEGRATIONOFlNITEVOLUMEFORMULATIONAS IMPLEMENTEDINTHE#&$CALCULATIONMETHODHAS BEENINTRODUCEDBY$EMIRDäICAND0ERIC 3IMULATIONOF)#PROCESSESHADBEENATTEMPTED BY A NUMBER OF RESEARCHERS $EMIRDäIC AND -UZAFERIJA PRESENTEDANUMERICALMETHOD FOR FLOW PREDICTIONS IN AN AIRCOOLED INTERNAL COMBUSTION ENGINE BY USING UNSTRUCTURED MOVINGMESHESWITHCELLSOFARBITRARYTOPOLOGY 4HE DEVELOPED NUMERICAL METHOD HAS BEEN

(3)

TESTED FOR ANY APPLICATION IN mUID mOW STRESS ANALYSIS AND HEAT TRANSFER #HEN ET AL PERFORMED CALCULATIONS OF THE FULL INTAKE AND COMPRESSION STROKES AND PRESENTED SOME COMPARISONS WITH THE EXPERIMENTAL DATA (OWEVERTHEIRRESULTSSHOWEDTHATTHETURBULENT VELOCITYISUNDERPREDICTEDDUETOLIMITATIONIN THESTANDARDKεMODEL(YUNETAL ALSO CARRIED OUT THE #&$ SIMULATION USING +)6!

WHERETHESHAPEOFCOMBUSTIONCHAMBERSWIRL INTENSITY AND INJECTION TIMING WERE MODIlED FOR THE ,0' DIRECT INJECTION ENGINE IN ORDER TO STUDYTHEEFFECTOFDIFFERENTTYPEOFCOMBUSTION CHAMBERBYUSINGVARIOUSPISTONCROWNS2IFAIET AL HASUTILISEDTHEARBITRARY,AGRANGIAN

%ULERIAN!,% METHODTOACCOUNTTHEPROBLEM INTHEDEFORMABLEmUIDDOMAINSANDTHEBROUGHT CASESTUDYWASEXHAUSTANDINTAKESTROKEOFAN EXAMPLEOFINTERNALCOMBUSTIONENGINE

!BD!LLA HAD PERFORMED A STUDY ON A FOURSTROKE SPARK IGNITION ENGINE IN ORDER TO DETERMINE THE CYLINDER PRESSURE FOR THE WHOLE FOURSTROKE CYCLE VIA EMPIRICAL FORMULATION AND THE RESULT OBTAINED WAS INLINE WITH THE

EXPERIMENTALRESULT4HEMOVINGMESHAPPROACH HADBEENUTILISEDBY#HOIETAL TOSIMULATE THECOMBUSTIONPROCESSINASPARKIGNITIONENGINE INORDERTOPREDICTOXIDATIONVELOCITYOFUNBURNED HYDROCARBON INSIDE COMBUSTION CHAMBER )N ADDITION9ASAR HAS DEVELOPED A NEW IGNITION MODEL BY EMPLOYING THE !,% METHOD INCORPORATED INSIDE +)6!6 CODE TO SIMULATE ENGINECOMBUSTIONANDmUIDmOW,ATELY0AYRI ETAL CARRIEDOUT#&$SIMULATIONONTHEIN CYLINDERmOWFORADIRECTINJECTION$IESELENGINE FORINTAKEANDCOMPRESSIONSTROKEUSINGVARIOUS COMBUSTION CHAMBERS AND VALIDATED THEIR NUMERICALRESULTWITHTHEEXPERIMENTALWORK 3INCE THE SUCCESS AND ACCURACY OF A #&$

SIMULATIONISMUCHDEPENDENTONTHEGEOMETRY OF COMPUTATIONAL DOMAIN AS WELL AS THE RIGHT BOUNDARYCONDITIONSANDFORMULATIONOBTAINING THEACTUALMESHISOFHIGHIMPORTANCE4HISHASTO BEACCOMPLISHEDPRIORTO#&$SIMULATIONWHICHIS INCYLINDERmUIDmOWANDCOMBUSTIONSIMULATION

!PART FROM THE DEFORMED COMPUTATIONAL DOMAINTHENATUREOFSUCHPROBLEMISUNSTEADY OR TRANSIENT COMPRESSIBLE HIGHLY TURBULENT 4!",%3PECIlCATIONOFTHEENGINEMODEL

%NGINE0ARAMETER 6ALUE

"OREMM

3TROKEMM

#APACITYCC

.UMBEROFCYLINDERS

#ONNECTINGRODLENGTHMM

#RANKRADIUSMM

0ISTONPINOFFSETMM

#RANKANGLESTARTŽ#! Ž

#RANKANGLESTOPŽ#! Ž

)NTAKEVALVEOPENŽ#! Ž"4$#

)NTAKEVALVECLOSEŽ#! Ž!"$#

%XHAUSTVALVEOPENŽ#! Ž""$#

%XHAUSTVALVECLOSEŽ#! Ž!4$#

-AXIMUMINTAKEVALVEMM

-AXIMUMEXHAUSTVALVEMM

6ALVELIFTPERIODICITYDEG Ž

(4)

CHEMICALLY REACTING DUE TO COMBUSTION OF AIR FUELMIXTUREANDMULTIPHASEINTHECASEOFLIQUID FUELS

4HEREFORE THE PURPOSE OF THIS WORK IS TO DEVELOP AN ALGORITHM WHICH CAN ACCURATELY ESTABLISHTHEMESHREQUIREDFOR#&$SIMULATION DURING THE TIME MARCHING PROCESS FOR A FOUR STROKE DIRECTINJECTION ENGINE USING GASEOUS FUEL IE COMPRESSED NATURAL GAS #.' 4HIS ALGORITHMCANALSOACTASACOORDINATORFORTHE

#&$SIMULATIONASITREMAPSmOWVARIABLESFROM THEMESHINTHEPREVIOUSTIMESTEPTOANEWMESH

SOTHATTHECONTRIBUTIONOFTRANSIENTTERMSINTHE mOW FORMULATION CAN BE ACCURATELY MODELLED 4HISWORKISANEXTENSIONTOTHEWORKCARRIEDOUT BY+URNIAWANETAL WHOCONCENTRATETHE DEVELOPMENT OF HALFENGINE MODEL (OWEVER FOR FULL COMBUSTION SIMULATION HALF MODEL IS NOT SUFFICIENT SINCE IT CANNOT SIMULATE THE PRESENCE OF SWIRL AND TUMBLE FLOWS AND ANY UNSYMMETRICALBEHAVIOUROFINCYLINDERmUIDmOW ANDCOMBUSTIONPROCESS

-/$%,'%.%2!4)/.!.$30%#)&)#!4)/.

)NTHISPAPERTHEDEVELOPMENTOFMOVINGMESH FOR A LITRE FOURCYLINDER FOURSTROKE DIRECT INJECTION AUTOMOTIVE ENGINE WAS PRESENTED 4HESPECIlCATIONOFTHESELECTEDENGINEMODEL

ISPRESENTEDIN4ABLE

4HEREARETHREETYPESOFPISTONUSEDIETHE mAT PISTON THE HOMOGENEOUS PISTON AND THE STRATIFIED PISTON4HEY HAVE DIFFERENT CROWN GEOMETRYTHATINmUENCESTHECOMPRESSIONRATIO OFTHEENGINE4HEUSEOFPLATPISTONRESULTSINA COMPRESSIONRATIOOFWHILSTTHEOTHERTWO TYPESLEADTOACOMPRESSIONRATIOOFWHICHIS MOREAPPROPRIATEFOR#.'FUEL&ORTHEPURPOSEOF DEMONSTRATINGTHEALGORITHMONLYTHEmATPISTON ISSHOWNINTHISPAPERANDTHEGEOMETRYOFTHE ONECYLINDERMODELISDEPICTEDIN&IGURE

-%4(/$/,/'9/&-/6).'-%3(

)N GENERAL THE MESH CAN BE SUBJECTED TO TRANSLATIONANDROTATIONORCANBEDISTORTEDIN ANYPRESCRIBEDACTIONBYSPECIFYINGTIMEVARYING POSITIONSFORSOMEORALLOFTHECELLVERTICES4HIS TYPE OF MESH MOVEMENT WHICH IS SOMETIMES REFERREDTOASARBITRARY,AGRANGIAN%ULERIANARE ABLETOACCOMMODATEAWIDERANGEOFMOVING MESHANDBOUNDARYPROBLEMSSUCHASTHETYPE OF#&$SIMULATIONUNDERCONSIDERATION

4HE ALGORITHM IS WRITTEN IN THE FORM OF THE 34!2#$4-COMMANDORMACROLANGUAGESINCE THE SIMULATION WILL LATER BE EXECUTED BY USING THE34!2#$SOFTWAREWHICHISACOMMERCIAL#&$

CODETYPICALLYUSEDINTHEAUTOMOTIVElELD!FTER ESTABLISHINGTHISMOVINGMESHALGORITHMANALYSIS

&)'52%4HEGEOMETRYOFTHEENGINEMODEL

(5)

ANDINVESTIGATIONONAIRFUELCHARACTERISTICSFUEL INJECTIONANDIGNITIONTIMINGmAMEPROPAGATION COMBUSTION PROCESSES EXHAUST EMISSION AND KNOCKDETECTIONCANBEPERFORMED

)NTHISTYPEOFMESHPROBLEMASMENTIONED PREVIOUSLY AN ADDITIONAL EQUATION CALLED THE SPACECONSERVATIONLAWISSOLVEDFORTHEMOVING COORDINATEVELOCITYCOMPONENTSTOGETHERWITH THEMASSANDMOMENTUMEQUATIONSSOTHATTHE CHANGEINCELLVOLUMEISRELATEDTOTHECOORDINATE FRAME VELOCITY4HE SIMULTANEOUS SATISFACTION OF THE SPACE CONSERVATION LAW AND ALL OTHER EQUATIONSOFmUIDMOTIONFACILITATETHEGENERAL OPERATION OF MOVING MESH -ESH MOVEMENT INCLUDESTHEARBITRARYMOTIONOFTHECELLVERTICES WHICHNEEDTOBEHANDLEDCAREFULLYBYWORKING FROM THE OUTSET WITH THE GENERAL FORMS OF THE GOVERNINGDIFFERENTIALEQUATIONSINANARBITRARY MOVING COORDINATE FRAME4HE DEVELOPMENT AND SOLUTION OF THE DISCRETISED FORMS OF THESE EQUATIONS ARE SOLVED DIRECTLY WITHIN THE lNITE VOLUME FRAMEWORK PROVIDED THAT APPROPRIATE MEASURES ARE TAKEN TO ENSURE COMPLIANCE TO THESPACECONSERVATIONLAWASAPARTOFTHE0)3/

ALGORITHM$EMIRDäICAND0ERIC

4HE SET OF EQUATIONS DESCRIBING THE CONSERVATION OF SPACE MASS MOMENTUM AND ENERGY IN A MOVING COORDINATE FRAME CAN BE MENTIONEDRESPECTIVELYAS7ARSI$EMIRDäIC AND0ERIC

1 0

g g

t vg u

u .

1 0

g tu g vr u

R .

R

1

g tu g v v v Tr Sv u

R .

R

1

g tu g vr q S u

RF .

R F F

WHERE√G IS THE DETERMINANT OF THE METRIC TENSOR V IS THE VELOCITY VECTOR VGIS THE GRID VELOCITYVRVnVGISTHEmUIDVELOCITYRELATIVETO THEMOVINGCOORDINATESYSTEMGRID ANDφISA SCALARQUANTITYTEMPERATURECONCENTRATIONETC 4HETERMSONTHERIGHTHANDSIDESOFEQUATIONS AND REPRESENT SOURCES OR SINKS 4 AND Q ARETHESTRESSTENSORANDTHESCALARmUXVECTOR RESPECTIVELYGIVENBY

T ¥p v I D

§¦

´

¶µ 2

3M . 2M q'FF

WHERE P IS THE PRESSURE› IS THE DYNAMIC VISCOSITY)ISTHEUNITTENSOR$ISTHEDEFORMATION RATETENSORTHESYMMETRICPARTOFTHEVELOCITY GRADIENT ANDΓφISTHEDIFFUSIVITYOFφ

%QUATION COULD BE USED TO CALCULATE THE CHANGEINCELLVOLUMEδ6FORAGIVENGRIDVELOCITY VG4HISAPPROACHISRELATIVELYPRACTICALWHENTHE GRID VELOCITY IS DESCRIBED BELOW &URTHERMORE IN MOST PRACTICAL APPLICATIONS FOR EXAMPLE IN CYLINDER mOW AND mOW AROUND MOVING VALVES THEGRIDPOSITIONATEACHTIMELEVELISPRESCRIBED ANDTHECHANGEINTHECELLVOLUMEASWELLASTHE SURFACEVECTORSAREGIVENORKNOWNQUANTITIES )NORDERTODEALWITHTHElNITEVOLUMEMETHOD FOR#&$CALCULATION%QUATIONISINTEGRATEDOVER ANARBITRARYCONTROLVOLUMECELL ANDTIMEWITH THE AID OF THE 'AUSSS DIVERGENCE THEOREM TO OBTAINTHEBELOWEQUATIONAS

WHEREδ6 6N n 6O IS THE CHANGE OF THE CELL VOLUME DURINGΔT 3 IS THE SURFACE OF THE CONTROL VOLUME D3 IS THE SURFACE VECTOR AND SUPERSCRIPTS@NAND@ODENOTETHENEWANDOLD TIMELEVELSRESPECTIVELY&ORTHE#ARTESIANVELOCITY COMPONENTSANDARBITRARYQUADRILATERALCONTROL VOLUME AS SHOWN IN &IGURE EQUATION ARE DERIVEDTOBECOMEASFOLLOWS

IEWNS

WHERE VGI UG VGI IS THE CELL FACE VELOCITY AND3I3X3YIISTHECELLFACEVECTOR)NORDERTO SATISFYTHESPACECONSERVATIONLAWTHEDElNITION OFTHEGRIDVELOCITIESSHOULDBEMADESOTHATTHE RATEOFCHANGEOFTHECELLVOLUMEOBTAINEDFROM THESPACECONSERVATIONLAWδ63#, ΔTISEXACTLY EQUALTOITSACTUALORGEOMETRICALRATEOFCHANGE δ6' ΔTWHICHISSTATEDINTHEEQUATIONAS DVG yDVSCL

4HIS SPACE CONSERVATION LAW CONCEPT AND METHODWILLBEAPPLIEDTOACOMPLICATEDTHREE DIMENSIONALCASEINAREALINTERNALCOMBUSTION ENGINEMODEL

(6)

4HE TYPICAL FLUID FLOW FOR THE APPLICATION OF MOVING MESHES IN AN INTERNAL COMBUSTION ENGINEREQUIRESALARGEVARIATIONINTHESOLUTION DOMAINSIZE)TCANBEMENTIONEDTHATIFTHETOTAL NUMBEROFCELLSINTHESOLUTIONDOMAINREMAINS lXEDATCERTAINTIMESTEPSTHECELLSPACINGINSIDE THE SOLUTION DOMAIN POSSIBLE TO BECOME TOO DENSEATSOMESTAGESOFTHESOLUTIONANDMAYBE TOO SPARSE AT OTHERS4HIS CIRCUMSTANCE IS NOT FAVOURABLETOBEAPPLIEDINTHE#&$SIMULATION FORTHEREASONSASFOLLOWS

A 4HE TIME STEP REQUIRED TO OBTAIN A TEMPORALLYACCURATESOLUTIONISDEPENDENT ONTHEMESH#OURANTNUMBER(ENCETHE UNNECESSARILYSMALLTIMESTEPSWILLPERHAPS BE NECESSARY IF THE SMALLER CELLS ARE GENERATED DURING THE TRANSIENT PROCESS WHICHWILL LEADTO LONGERCOMPUTATIONAL TIMES

B 4HE NUMERICAL INSTABILITY PROBLEMS ASSOCIATEDWITHLARGEASPECTRATIOSMIGHT BEOCCURREDDURINGUNSTEADYCALCULATION 4HOSEPOTENTIALPROBLEMSCANBEOVERCOMEBY

ENABLINGCELLSTOBEREMOVEDORADDEDDURINGTHE TIME MARCHING PROCESS4HEREFORE THE AVERAGE CELLSIZECANREMAINAPPROXIMATELYTHESAME 4HEGENERALPRINCIPLEINREMOVALCELLSISTHAT THEMESHCAUSESTWOORMOREOPPOSINGPAIRSOF CELL FACES TO BECOME COINCIDENT AT A SPECIlED TIME STEP THEREBY CAUSING ALL OTHER FACES TO COLLAPSETOLINESORPOINTSANDTHUSMAKINGTHE CELLDISAPPEAR/NTHEOTHERHANDTHEOPPOSITE PROCESSISUSEDFORCELLADDITION4HESEPROCESSES COULDBEPERFORMEDONAMOREORLESSARBITRARY SELECTIONOFINDIVIDUALCELLSORAGROUPOFCELLS (OWEVER IN ORDER TO SIMPLIFY ADDITION AND REMOVALOFCELLSITCANBEAPPLIEDTOCELLLAYERS IE ASSEMBLIES OF SINGLECELL THICKNESS4HIS IS ILLUSTRATED IN &IGURE WHICH SHOWS EXPANSION ANDCOMPRESSIONOFAMESHWITHINTHECYLINDER AND THE INTAKE PORT OF AN INTERNAL COMBUSTION ENGINE

)NTHEDEVELOPMENTOFTHEMOVINGMESHFOR ENGINETHECELLSHOULDHAVEITSPREFERABLESHAPE TOMOVEANDSQUEEZEWITHINTHELAYERSOFSOLUTION

&)'52%#ONTROLVOLUMEANDLABELLINGSCHEME Sn

Sw

Ss

Se

se sw s

w

nw n ne

e P

Volume

(7)

DOMAIN4HECELLSHAPESOTHERTHANHEXAHEDRAL CELLSMAYBEDIFlCULTTOIDENTIFYLAYERSBELONGED TO THOSE CELLS4HERE ARE SOME REQUIREMENTS WHICHARETOBECONSIDEREDINORDERTODEVELOP THEMOVINGMESHFORAN)#ENGINEMODELWHICH ARELISTEDASFOLLOWS#$!DAPCO'ROUP A 4HECELLSFORMINGTHEOUTERPERIPHERYOF

THELAYERMUSTLIEADJACENTTOBOUNDARIES WHICHMAYBEOFANYTYPEOFCELLSSHAPES B 4HE FACES WHICH COLLAPSE MUST BE

QUADRILATERALS BUT THOSE THAT FORM THE UPPERANDLOWERSURFACEOFTHELAYERMAY BEOFANYSTANDARDSHAPEQUADRILATERALOR TRIANGULAR

C %ITHER THE UPPER OR LOWER SURFACE OF A LAYER MAY COINCIDE IN WHOLE OR PART WITH A BOUNDARY BUT NOT BOTH SURFACES SIMULTANEOUSLY

D 0OLYHEDRAL CELLS CAN ONLY BE COLLAPSED IF THEY HAVE BEEN FORMED BY EXTRUDING ANOTHERCELLINTHEDIRECTIONOFCOLLAPSE E ,AYERS MAY BE ADDED ONLY IF THEY WERE

PREVIOUSLYREMOVEDANDTHEYSHOULDBE REINSERTED IN REVERSE ORDER OF REMOVAL

!LTHOUGH THIS MAY APPEAR RESTRICTIVE IT SHOULDBEREITERATEDSOTHATTHEREMOVAL PROCESS MAY BE PERFORMED PRIOR TO THE STARTOFAmUIDSCALCULATION

F 7HENTHECELLLAYERSARERESTOREDTHEYWILL REACQUIRETHEBOUNDARIESTHEYHADWHEN THEREWEREREMOVED

G ,AYERS NEXT TO AN ARBITRARY INTERFACE OR REGIONOFEMBEDDEDRElNEMENTMAYNOT BEREMOVED

4HE CELL REMOVAL PROCESS IS ACCOMPLISHED PRESENTLY WITH THE AID OF THE GENERAL MESH MOTIONPROCEDURE4HISALLOWSTHEFACESOFACELL TOBEMOVEDINSUCHAWAYASTOSHRINKITSVOLUME TOZEROONWHICHITCANBEREMOVEDANDTHENTHE MESHWILLARRANGEBYITSELF!TTHESAMETIMETHE MASSMOMENTUMANDENERGYASSOCIATEDWITHTHE CELLSINTHELAYERTOBEREMOVEDAREADDEDTOTHE CELLSINTHENEIGHBOURINGLAYERINAVOLUMETRICALLY CONSERVATIVEMANNER

4HE CELL ADDITION PROCESS IS OPERATED IN SIMILAR BUT REVERSE WAY4HE DIFFERENCE IS THAT IT IS NECESSARY TO INITIALIZE THE VARIABLES OF THE

&)'52%-OVINGMESHFOR#&$SIMULATIONINTHE)#ENGINE A 0ISTONATTOPDEADCENTREˆMOSTCELLLAYERS

DEACTIVATED

C 0ISTONATBOTTOMDEADCENTREˆMOSTCELLLAYERS ACTIVATED

(8)

NEWLY CREATED GRID NODE4HIS IS CARRIED OUT BY APPROPRIATE MAPPING AND INTERPOLATION TECHNIQUES IE THE INITIAL FIELD VALUES IN THE ADDEDLAYERAREOBTAINEDBYINTERPOLATIONFROM NEIGHBOURING LIVE CELLS (ERE CONSERVATION IS ASSUREDBYENSURINGTHEZEROVOLUMEOFADDED CELLLAYER

"OTH THE REMOVAL AND ADDITION PROCEDURES ARE PERFORMED WITHOUT SACRIlCING THE IMPLICIT

METHODWHICHISTHEPREFERREDSOLUTIONSTRATEGY FORTRANSIENTANALYSIS4HEGENERALPROCEDUREFOR THEWHOLEPROCESSISILLUSTRATEDIN&IGURE '2)$!.$%6%.43#/$%'%.%2!4)/.

)N ORDER TO BUILD AND DEVELOP THE MOVING MESHFORANYPARTICULARAPPLICATIONTHEEVENTS SHOULD BE PROVIDED AND CREATED IN THE FORM OF PROGRAMMING LANGUAGE INSIDE THE 34!2#$

&)'52%&LOWCHARTFORDEVELOPINGMOVINGMESHALGORITHM Develop the IC engine model (surface mesh)

with the CAD software e.g. CATIA

Export the model to the grid generator software STAR-CD

Develop and generate the preferred mesh for moving mesh simulation

Identify and develop the sequence events according to the crank angle and strokes occured in the IC engine

model to perform the moving mesh simulation

Write the macro programming language (scripts) inside STAR-CD based on the events declaration done.

Write and execute the grid activation command to move out the vertices position consistent with the events declaration

Examine, check and verify the developed moving mesh by accomplishing the mesh preview run

(9)

SOFTWARE SO THAT THE MESH MOVEMENT CAN BE DONEBYDISTORTINGANDEXTRUDINGTHEVERTICESOF THECELLLAYERSOFTHEENGINEMODEL)NTHISCASE EVENTS DECLARATION IS REQUIRED TO GENERATE THE TIME STEPS FOR EVERY ENGINE STROKES4HEN THE GRID ACTIVATION COMMAND IS EXECUTED TO MOVE THEVERTICESPOSITIONWITHINTHEMESHGEOMETRY BASEDONTHEEVENTSDECLARED#HANGESINMESH GEOMETRYCANBESPECIlEDINTHE89AND:AXIS EITHERBY34!2#$OUTPUTCOMMANDORTHROUGH CUSTOMISED CODING IN USER SUBROUTINES )N THE

USER SUBROUTINE THE GEOMETRY OF THE MODEL CAN BE VARIED BY DElNING THE COORDINATES OF THEVERTEXASAFUNCTIONOFTIMEORDEGREECRANK ANGLE

!SIMPLEMOVINGMESHISILLUSTRATEDIN&IGURE ANDTHESTEPSAND34!2#$COMMANDSCRIPTS REQUIRED TO PERFORM THIS PROCESS ARE AS STATED BELOW

4HEBELOWALGORITHMFORMSTHEBASICCONCEPTS OF DEVELOPING MOVING MESH FOR THE ENGINE MODELWHICHINVOLVESINITIALISINGANDDECLARING

3TEP 'ENERATETHEMESHATCERTAINTIMESTEPFOREXAMPLEATTIMET

4)-%42!.3 TURNONTHETRANSIENTOPTION

-6'2)$/.%6%.402/34!2 TURNONTHEMOVINGGRIDOPTION 3TEP $ElNEANEVENTSTEPDATAlLE

%6&),%).)4)!,CASENAMEEVN INITIALISETHEEVENTSlLE

%634%04)-% DElNEANEVENT

%'2)$2%!$CASENAMECGRD RETRIEVE FROM FILE CASENAMECGRD REGARDING

DESCRIPTIONOFMESHOPERATIONSINCODEDFORM

%63!6% SAVEASEVENTNO

3TEP #REATE THE CASENAMECGRD lLE AS THE GRID ACTIVATION COMMAND TO MOVE THE VERTICESACCORDINGTOTHEEVENTSTEPDATADECLAREDEARLIER

63%4./.% CLEARTHEVERTEXSETFROMTHElLE

63%4!$$62!.'% ADDVERTICESANDTOTHESET

3%490/344)-% SET PARAMETER90/34 EQUAL TO THE CURRENT

TIME

6-/$63%4&90/34 CHANGETHEYCOORDINATEOFTHEVERTEXSETSOTHAT

ITREFERSTOTHELOWESTPOSITIONOFTHEMESH

6&),, REPOSITIONTHEMESHVERTICESBETWEENTHETWO

BOUNDARIES

&)'52%3IMPLEMOVINGMESH

5 m/s 12

10

8

6

4

2 11

9

7

5

3

1 Y

X

(10)

4!",%$EGREEOFCRANKANGLEOFSINGLECYLINDERENGINEMODELFORCRITICALEVENTS

#RANK!NGLEDEGREE %VENTS

)NTAKEVALVEOPENINGVALVEOVERLAP

4OPDEADCENTRE4$#

-AXIMUMINTAKEVALVELIFT

"OTTOMDEADCENTRE"$#

-IDDLEOFCOMPRESSIONSTROKE

4OPDEADCENTRE4$#

-IDDLEOFPOWERSTROKE

"OTTOMDEADCENTRE"$#

-AXIMUMEXHAUSTVALVELIFT

4OPDEADCENTRE4$#

THEEVENTSlLEBEFOREPROCEEDINGTOCREATIONOF GRIDACTIVATIONCOMMANDTOMOVEANDLOCATETHE MESHVERTICESINTHEMODEL

-/6).' -%3( !,'/2)4(- &/2 3).',%

#9,).$%2-/$%,

)N THIS SECTION THE MOVING MESH FOR A SINGLE CYLINDERENGINEISDEVELOPEDINORDERTOPROVIDE APRELIMINARYSTUDYONTHE)#PROCESSWHICHCAN LATERBEVALIDATEDTHROUGHEXPERIMENTONSINGLE CYLINDERENGINETESTRIG/NLYAFTERTHECOMBUSTION PROCESSISOPTIMISEDTHEOVERALLPERFORMANCEOF THE WHOLE ENGINE CAN BE ANALYSED USING THE MULTICYLINDERMOVINGMESHENGINEMODEL

4HE SIMULATION OF THE MOVING MESH WILL BE PERFORMEDACCORDINGTOTHECRANKANGLEWHICH VARIES WITH EVERY TIME STEP4HE SIMULATION OF THE ENGINE CYCLE WILL INCLUDE EVENTS FOR INTAKE STROKE COMPRESSION STROKE POWER STROKE AND EXHAUST STROKE -OREOVER EVENTS FOR CHANGES IN POSITIONS FOR THE INTAKE AND EXHAUST VALVES AREALSOINCORPORATEDINTOTHESIMULATION4HESE IMPORTANTEVENTSARECRITICALINORDERTOPRODUCE ASOUNDMOVINGMESHFOR#&$CALCULATIONWHICH IS FREE FROM ANY NEGATIVE VOLUME4ABLE LISTS SOMEIMPORTANTDEGREESOFCRANKANGLETHATARE PLOTTEDDURINGTHESIMULATION4HESIMULATIONIS SUBSEQUENTLYPERFORMEDFORTHEFULLENGINECYCLE ONTHEMOVINGMESHONLYWITHOUTmUIDmOWAND COMBUSTIONINORDERTOVERIFYTHEALGORITHMFOR THEMOVINGMESH

4HESIMULATIONRESULTSFORTHElRSTTHREEEVENTS

²#!²#!AND²#! INTHEINTAKESTROKE AREDISPLAYEDIN&IGURE4HEINTAKEVALVESTARTSTO OPENWHILETHEEXHAUSTVALVEISNEARLYCLOSE4HIS PERIOD IS CALLED VALVE OVERLAP AND IT CONTINUES UNTIL THE PISTON REACHES4$# AT THE ²#! AS SHOWN4HEN THE INTAKE VALVE TRAVELS UNTIL IT REACHESITSMAXIMUMLIFTATTHE²#!$URING THESE PERIODS THE ACTIVE CELL LAYERS ARE IN THE INTAKEVALVETHEEXHAUSTVALVEANDTHECYLINDER SOTHATTHEIRVERTICESATTHISENGINEPARTSNEEDTO BEMOVEDANDPOSITIONEDACCORDINGTOCERTAIN CRANKANGLE

!T THE END OF INTAKE STROKE IE ²#! THE

PISTONISATTHEBOTTOMDEADCENTRE"$# AND THEINTAKEVALVEISNEARTOITSCLOSEDPOSITIONAS CAN BE SEEN IN &IGURE !T ²#! THE INTAKE VALVEISALREADYCLOSEDANDPISTONMOVESUPTO DOTHECOMPRESSIONSTROKEWHEREMOSTOFACTIVE CELLLAYERSDURINGTHISCOMPRESSIONSTROKEARETHE MESHLAYERSINTHECYLINDER4HECELLLAYERSATTHE VICINITY OF THE INTAKE VALVE ARE TO BE ACTIVATED WHEN THE VALVE IS NEARLY CLOSE UNTIL THE PISTON REACHES4$# !T ²#! THE PISTON IS AGAIN AT 4$#ANDTHEINTAKEANDEXHAUSTVALVESARECLOSED TOMARKTHEENDOFCOMPRESSIONSTROKE4HEREIS NOACTIVECELLLAYERATTHISPOSITIONASMOSTOFTHE CELLLAYERSAREDEACTIVATED

.EXT THE SIMULATION IS PERFORMED DURING POWERSTROKEAT²#!UNTIL²#!WHERETHE PISTON IS AT THE "$# POSITION WHICH MARKS THE

(11)

CELLLAYERSATTHEEXHAUSTVALVEANDTHECYLINDER WILL CONTINUE TO BE ACTIVATED AND DEACTIVATED RESPECTIVELY UNTIL THE PISTON REACHES THE4$#

POSITION4HELASTPARTSIMULATEDINTHISWORKIS THEPOSITIONOFTHEPISTONAT4$#²#! AFTER THEENDOFEXHAUSTSTROKEWHEREBOTHTHEINTAKE ANDEXHAUSTVALVESARECLOSEDANDMOSTOFTHECELL LAYERSAREINNONACTIVEPOSITION4HESIMULATION ATTHEEXHAUSTSTROKEISDEPICTEDIN&IGURE END OF THE POWER STROKE !T THIS MOMENT THE

EXHAUSTVALVEISALREADYOPENTOMARKTHESTARTOF THEEXHAUSTSTROKE&IGUREILLUSTRATESTHEMESH POSITIONDURINGTHEPOWERSTROKE

$URING THE EXHAUST STROKE MOST OF THE CELL LAYERSINTHECYLINDERAREDEACTIVATEDTOMOVEUP WITHTHEPISTONUNTILTHEEXHAUSTVALVEREACHESITS MAXIMUMLIFTPOSITION4HENWHENTHEEXHAUST VALVEISOPENTOREMOVETHEEXHAUSTGASESTHE

&)'52%-OVINGMESHDURINGINTAKESTROKE A )NTAKEVALVEOPENING

AT²#!

B 4OPDEADCENTREAT²#!

C -AXIMUMINTAKEVALVELIFT AT²#!

%XHAUST VALVES

)NTAKE VALVES

&)'52%-OVINGMESHDURINGCOMPRESSIONSTROKE A %NDOFINTAKESTOKEAT²#!

B #OMPRESSIONSTROKEAT²#!

C %NDOFCOMPRESSIONSTROKE AT²#!

(12)

&)'52%$COMPUTATIONALMESHOFTHEMULTICYLINDERENGINEMODEL

&)'52%-OVINGMESHDURINGPOWERSTROKE

A 0OWERSTROKEAT²#! B "OTTOMDEADCENTREAT²#!

&)'52%-OVINGMESHDURINGEXHAUSTSTROKE A -AXIMUMEXHAUSTVALVELIFT

AT²#!

B 4OPDEADCENTRE AT²#!

(13)

&)'52%-ULTICYLINDERMODELWHENCYLINDERUNDERGONEMAXIMUMINTAKEVALVELIFTAT²#!

&)'52%-ULTICYLINDERMODELWHENCYLINDERUNDERGONEMAXIMUMEXHAUSTVALVELIFTAT²#!

-/6).' -%3( !,'/2)4(- &/2 -5,4)

#9,).$%2-/$%,

!FTER ESTABLISHING THE MOVING MESH CONCEPT FOR A SINGLE CYLINDER ENGINE THIS SECTION WILL NOW PRESENT THE MOVING MESH ALGORITHM FOR MULTICYLINDER ENGINE MODEL BY DUPLICATING THE CYLINDER INTO FOUR UNITS AND ADDING INLET AND EXHAUST MANIFOLDS IN ORDER TO REPRESENT THEWHOLEENGINEUNIT4HEFULLCAPACITYOFTHE ENGINE IS NOW CM APPROXIMATELY LITRE REPRESENTING FOUR CYLINDERS !S FOR THIS FOUR CYLINDER ENGINE THE COMBUSTION PROCESS ISEXECUTEDACCORDINGTOTHElRINGORDEROF

4HEREFORE THE EXECUTION OF THE DEVELOPED ALGORITHMFOLLOWSTHESAMEORDER

4HESIMULATIONOFTHEMOVINGMESHFORMULTI CYLINDERENGINEISALSOPERFORMEDACCORDINGTO THECRANKANGLEWHEREEACHCYLINDERUNDERGOES INTAKESTROKECOMPRESSIONSTROKEPOWERSTROKE ANDEXHAUSTSTROKESEQUENTIALLYACCORDINGTOTHE lRINGORDER4HEFULLTHREEDIMENSIONALMODELFOR THEFOURCYLINDERENGINEISSHOWNIN&IGURE 4HESIMULATIONRESULTSOFTHEMULTICYLINDER MODELFORSEVERALIMPORTANTEVENTSAREPRESENTED IN&IGURESAND4HESEAREFORTHEMAXIMUM INTAKEVALVELIFTAT²#!ANDTHEEXHAUSTINTAKE VALVELIFTAT²#!RESPECTIVELY4HESEQUENCE

(14)

2%&%2%.#%3

!BD!LLA'(#OMPUTERSIMULATIONOFAFOUR STROKESPARKIGNITIONENGINE%NERGY#ONVERSION AND-ANAGEMENT

#$!DAPCO 'ROUP 34!2#$ 6ERSION -ETHODOLOGY AND 5SER 'UIDE ,ONDON

#OMPUTATIONAL$YNAMICS,IMITED

#HEN !6ESHAGH ! 7ALLACE 3 )NTAKE mOW PREDICTIONS OF A TRANSPARENT $) $IESEL ENGINE 3!%0APER

#HOI(+IM3-IN+/XIDATIONOFUNBURNED HYDROCARBONS FROM #REVICES IN SPARKIGNITION ENGINES 0ROC TH )NTERNATIONAL 3YMPOSIUM ON

$IAGNOSTIC AND -ODELLING OF #OMBUSTION IN )NTERNAL#OMBUSTION%NGINES.AGOYA*APAN

$EMIRDäIC ) ! FINITE VOLUME METHOD FOR COMPUTATIONOFmUIDmOWINCOMPLEXGEOMETRIES 0H$4HESIS5NIVERSITYOF,ONDON

$EMIRDäIC)-UZAFERIJA3.UMERICALMETHOD FORCOUPLEDmUIDmOWHEATTRANSFERANDSTRESS ANALYSIS USING UNSTRUCTURED MOVING MESHES WITH CELLS OF ARBITRARY TOPOLOGY #OMPUTER -ETHODSIN!PPLIED-ECHANICSAND%NGINEERING

$EMIRDäIC ) 0ERIC - 3PACE CONSERVATION LAW IN lNITE VOLUME CALCULATION OF mUID mOW )NTERNATIONAL*OURNALOF.UMERICAL-ETHODSIN

&LUIDS

(YUN'/GUMA-'OTO3$#&$ANALYSIS OF THE MIXTURE FORMATION PROCESS IN AN ,0'

$)3)ENGINEFORHEAVYDUTYVEHICLES0ROCTH )NTERNATIONAL #ONFERENCE IN -ULTIDIMENSIONAL

%NGINE -ODELLING 5SER 'ROUP -EETING n 3!%

#ONGRESS

7ENDY (ARDYONO +URNIAWAN !ZHARI 3HAMSUDEEN 3HAHRIR!BDULLAH4HEDEVELOPMENTOF MOVINGMESHFORTHEHALFMODELSIMULATIONOF AFOURSTROKEAUTOMOTIVEENGINE0ROC.ATIONAL 3EMINAROF#OMPUTATIONAL

0AYRI & "ENAJES * -ARGOT 8 'IL ! #&$

MODELLING OF THE INCYLINDER FLOW IN DIRECT INJECTION$IESELENGINES#OMPUTERS&LUIDS

2IFAI3-"UELL*#*OHAN:(UGHES4*2

!UTOMOTIVE DESIGN APPLICATIONS OF mUID mOW SIMULATION ON PARALLEL COMPUTING PLATFORMS

#OMPUTER -ETHODS IN !PPLIED -ECHANICS AND 4!",%4HESEQUENCEEVENTFOREACHCYLINDER

#RANK!NGLE DEGREE

%VENTS$ElNED3TROKE

#YLINDER #YLINDER #YLINDER #YLINDER

)NTAKE %XHAUST #OMPRESSION 0OWER

#OMPRESSION )NTAKE 0OWER %XHAUST

0OWER #OMPRESSION %XHAUST )NTAKE

%XHAUST 0OWER )NTAKE #OMPRESSION

4$# "$# "$# 4$#

OFEVENTSOFTHEFULLENGINECYCLEFORALLCYLINDERS ISSUMMARIZEDINTHE4ABLE

#/.#,53)/.!.$&5452%7/2+

)NTHISPAPERTHEDEVELOPMENTOFMOVINGMESHFOR THEENGINECYCLESIMULATIONFORASINGLEANDMULTI CYLINDERENGINEMODELISPRESENTEDWHERETHE ALGORITHMREQUIREDTOPERFORMINCYLINDERmUID mOWANDCOMBUSTIONSIMULATIONISSUCCESSFULLY DEVELOPED !T ALL INSTANCES THE ALGORITHM CAN CAPTURE AND DERIVE THE REQUIRED MESH AS A FUNCTIONOFCRANKANGLE)NEACHSIMULATIONTHE POSITIONOFTHEINTAKEVALVEEXHAUSTVALVEAND PISTONINTHECOMBUSTIONCHAMBERCANBEKNOWN ANDDETERMINED

&OR FUTURE WORK THE SIMULATION IS EXTENDED TO INVESTIGATE THE COMBUSTION PROCESS WHICH INCLUDED FUEL INJECTION AND IGNITION WHERE APPROPRIATEBOUNDARYCONDITIONSWILLBEAPPLIED TO THE COMPUTATIONAL MESH AND THE MODEL EXECUTEDTOYIELDTHESIMULATEDENGINEOPERATING CONDITION WHICH CAN REDUCE DEPENDENCY ON EXPERIMENTALWORKOFTESTRIGWHENDESIGNINGA NEWENGINE

!#+./7,%$'%-%.43

4HEAUTHORSWOULDLIKETOTHANKTHE-ALAYSIAN -INISTRYOF3CIENCE4ECHNOLOGYAND)NNOVATION FORSPONSORINGTHISWORKUNDERTHEPROJECT)20!

02

(15)

%NGINEERING

4HOMAS 0 $ ,OMBARD # + 'EOMETRIC CONSERVATION LAW AND ITS APPLICATION TO mOW COMPUTATIONS ON MOVING GRIDS !)!!*OURNAL

4RULIO*'4RIGGER+2.UMERICALSOLUTIONOFTHE ONEDIMENSIONALHYDRODYNAMICEQUATIONSINAN ARBITRARY TIMEDEPENDENT COORDINATE SYSTEM

5NIVERSITY OF #ALIFORNIA ,AWRENCE 2ADIATION ,ABORATORY2EPORT5#,2

7ARSI : 5 ! #ONSERVATION FORM OF THE .AVIER3TOKESEQUATIONSINGENERALNONSTEADY COORDINATES!)!!*OURNAL

9ASAR/!NEWIGNITIONMODELFORSPARKIGNITED ENGINE SIMULATIONS 0ARALLEL #OMPUTING

Rujukan

DOKUMEN BERKAITAN

Furthermore, this analysis show that the NARMAX model yield better accuracy as compared to autoregressive moving average with exogenous input (ARMAX) model in diagnosis

In this research, the researchers will examine the relationship between the fluctuation of housing price in the United States and the macroeconomic variables, which are

2.1 Measuring FFS Using Moving Car Observer Method MCO is a method that involves the use of test vehicle within a traffic stream for measuring travel time, flow

In this study, the performance and emission characteristics of a single cylinder direct injection diesel engine was investigated by using different combination of biodiesel blends

The study on performance and emissions using Four Stroke single cylinder Diesel engine can be conclude that the fuel consumption rate increases as the POME percentage

1) To convert a carbureted, crankcase scavenged two-stroke engine to LPG direct fuel injection. 2) To perform parametric modeling with WAVE dynamic engine

The passive radar system consists of both transmitters, to generate microwaves domain and produce the electromagnetic waves for radio system, and the receiver, to receive and

One of the other effective factors in the laboratory designing of the biologic products is the movement flow. The moving style of every production factor in a laboratory may have