• Tiada Hasil Ditemukan

Development of short cut design method for CO removal system

N/A
N/A
Protected

Academic year: 2022

Share "Development of short cut design method for CO removal system"

Copied!
14
0
0

Tekspenuh

(1)

$EVELOPMENTOF3HORT#UT$ESIGN-ETHOD FOR#/2EMOVAL3YSTEM

3ITI+ARTOM+AMARUDIN7AN2AMLI7AN$AUDAND!BDUL7AHAB-OHAMMAD

*ABATAN+EJURUTERAAN+IMIADAN0ROSES

&AKULTI+EJURUTERAAN 5NIVERSITI+EBANGSAAN-ALAYSIA

5+-"ANGI 3ELANGOR -ALAYSIA

2ECEIVED$ATETH/CTOBER !CCEPTED$ATETH&EBRUARY

!"342!#4

(YDROGENRICHREFORMATEPRODUCEDBYREFORMINGPRIMARYFUELSINTHEFUELPROCESSORSYSTEMCONTAINS SIGNIlCANTAMOUNTOF#/WHICHISTHEMAINCULPRITFORTHEPERFORMANCEREDUCTIONIN0ROTON%LECTROLYTE -EMBRANE&UEL#ELL0%-&# PERFORMANCEBY#/POISONINGONTHE0LATINUMCATALYSTATANODE4HUS THEREFORMATEFROMTHEFUELPROCESSORSYSTEMMUSTBEPURIlEDBYREMOVING#/BEFOREBEINGUSEDIN THE0%-&#STACK4HEOBJECTIVEOFTHEPRESENTSTUDYISTODESIGNCONCEPTUALLYA#/REMOVALSYSTEM CONSISTINGOFAMESOPOROUSTUBULARCERAMICMEMBRANE4#- ANDAPRESSURESWINGADSORBER03! IN SERIES4HElRSTSECTIONOFTHEPRESENTSTUDYDESCRIBESTHEDESIGNOFTHE4#-ANDTHESECONDSECTION DESCRIBESTHEDESIGNOFTHE03!4HEDESIGNSFORBOTHUNITSAREBASEDONNEWSHORTCUTDESIGNMETHODS DEVELOPEDBYTHEAUTHORS4HEEFFECTOFSOMEIMPORTANTPARAMETERSSUCHASTHETEMPERATUREPRESSURE ANDMEMBRANEAREAONTHEDEGREEOFSEPARATIONISINVESTIGATED)TISFOUNDTHATTHEORETICALLYTHE4#- 03!SYSTEMCAPABLEOFREDUCINGTHE#/CONCENTRATIONFROMPPMTOLESSTHANPPM

+EYWORDS0%-&#$ESIGNTUBULARCERAMICMEMBRANEPRESSURESWINGADSORBER

!"342!+

(IDROGENYANGDIHASILKANDIUNITPEMPROSESANBAHANAPIMENGANDUNGIKANDUNGANKARBONDIOKSIDAYANG MAMPUMENJEJASKANPRESTASISELBAHANAPI+ARBONDIOKSIDAMERUPAKANRACUNKEPADAMANGKINPLATINUM PADABAHAGIANANODDISTAKSELBAHANAPI$ENGANITUKARBONDIOKSIDADIDALAMALIRANPEMBENTUKANSEMULA HIDROGENPERLUDIPINDAHKANSEBELUMALIRANTERSEBUTMEMASUKISTAKSELBAHANAPI/BJEKTIFUTAMAKAJIAN ADALAHUNTUKMEREKABENTUKKONSEPSISTEMPEMINDAHANKARBONDIOKSIDADENGANMENGGUNAKANKAEDAHREKA BENTUKPINTAS$UAUNITALATPENULENANDIGUNAKANSECARASELARIDIDALAMKAJIANINIIAITUMODULMEMBRAN SERAMIKDANPENJERAPTEKANANBERAYUN"AHAGIANPERTAMAKAJIANINIAKANMENERANGKANMENGENAIREKA

(2)

BENTUKMEMBRANDIIKUTIDENGANREKABENTUKSISTEMPENJERAP+AJIANINIJUGAMELIHATKEPADAKESAN PARAMETERPARAMETERPENTINGSEPERTISUHUTEKANANDANLUASMEMBRANTERHADAPDARJAHPEMISAHAN MEMBRAN(ASILREKABENTUKMENUNJUKKANKEDUADUAUNITMEMBRANDANPENJERAPBERUPAYAUNTUK MENGURANGKANKEPEKATANKARBONDIOKSIDADARIPADABPJKEPADAKURANGDARIPADABPJ

+ATAKUNCI0%-&#REKABENTUKMODULMEMBRANSERAMIKPENJERAPTEKANANBERAYUN ).42/$5#4)/.

4HEREFORMATEFROMFUELPROCESSORUNITSCONSISTS OFHYDROGENCARBONDIOXIDECARBONMONOXIDE ANDRESIDUESOFHYDROCARBONS3INCETHEANODE CATALYSTOFAPROTONELECTROLYTEMEMBRANEFUEL CELL 0%-&# IS PLATINUM BASE WHICH IS EASILY POISONED BY #/ ! #/ MANAGEMENT SYSTEM IS REQUIRED TO LOWER THE #/ CONCENTRATION TO ACCEPTABLELEVELS)NGENERALTHE#/CONTENTIN THEPRODUCTHYDROGENHASTOBEBELOWPPMIN ORDERTOBEUSEDASTHEANODEGASFORTHE0%-&#

4HEMAINOBJECTIVEOFTHISSTUDYISTODEVELOPA SHORTCUTDESIGNMETHODFOR#/REMOVALSYSTEM 4WO SEPARATION UNITS WERE INTRODUCED IN THIS PAPERNAMELYTHETUBULARCERAMICMEMBRANE 4#- AND PRESSURE SWING ADSORBER03! "OTH MEMBRANE AND ADSORBER WILL BE OPERATED IN PARALLEL TO GAIN THE PRODUCT PURITY AS HYDROGENAND#/LESSTHANPPM4HEEFFECT OF SOME IMPORTANT PARAMETERS SUCH AS THE TEMPERATUREPRESSUREANDMEMBRANETHICKNESS ONTHEDEGREEOFSEPARATIONWEREINVESTIGATED 4(%/2%4()#!,"!#+'2/5.$

4UBULAR#ERAMIC-EMBRANE4#-

4HERE HAS BEEN A CONSIDERABLE GROWTH IN THE RESEARCH AND DEVELOPMENT OF ORGANIC AND INORGANICMEMBRANEMATERIALSFORTHESEPARATION OFGASMIXTUREDURINGTHELASTYEARS4HEINTEREST INMEMBRANEPROCESSTOSEPARATEGASMIXTURES USING INORGANIC MEMBRANE HAS INCREASED CONSIDERABLY 4HE ADVANTAGE OF INORGANIC MEMBRANES COMPARED TO ORGANIC MEMBRANES ISESSENTIALLYTHEIRTHERMALANDCHEMICALSTABILITY

"OTHPOROUSANDNONPOROUSDENSE INORGANIC MEMBRANES-ANDALETAL CANBEUSEDAS SELECTIVEGASSEPARATIONBARRIERS4HESEPARATION FACTORS FOR POROUS MEMBRANES ARE HOWEVER MUCHLOWERTHANTHOSEOF0DALLOYSUNLESSTHE PORESAREOFMOLECULARDIMENSION(OWEVERDUE TO HYDROGEN EMBITTERMENT A PHENOMENON IN WHICHDISSOLVEDHYDROGENTENDSTOCAUSELATTICE EXPANSIONINTHEMETALEVENTUALLYCAUSINGITTO RUPTUREONREPEATEDPRESSUREANDTEMPERATURE

CYCLING )N ADDITION PALLADIUM AND 0DALLOY REQUIRESAHIGHPRESSUREDIFFERENTIALBAR AND A RELATIVELY HIGH TEMPERATURE °#

*AYARAMAN,IN

! BASIC PRINCIPLE FOR SELECTING INORGANIC MATERIALS FOR DENSE IONIC CONDUCTING CERAMIC MEMBRANESISDESCRIBEDFORHIGHTEMPERATURE PERMEATIONREACTION EXPERIMENTS 4HE NEW DEVELOPMENTSOFCERAMICMEMBRANESHAVEGIVEN RISETOMANYPOSSIBILITIESFORCATALYTICMEMBRANES REACTORS/THMAN1I,IN 4HEMAIN ADVANTAGESOFTHESEMEMBRANESOVERPOLYMERIC MEMBRANESARE GREATERmUXESANDSTABILITY AT HIGH TEMPERATURES THE POROSITIES ARE AS HIGHANDCONTROLLED STABLEANDNARROWPORE SIZE DISTRIBUTIONS MECHANICALLY STABLE AND CANWITHSTANDHIGHPRESSUREDROPS RESISTANT TO CORROSIVE CHEMICALS CATALYTIC MATERIALS THATAREDEPOSITEDBYIMPREGNATIONCANALSOBE DISPERSEDONCERAMICSANDTHUSTHEYCANHAVE HIGHCATALYSTSURFACEVOLUMERATIOS THERMAL ANDCHEMICALLYSTABLE LONGLIFETIME(EIZEL ETAL,EEETAL

!LTHOUGH THE POROUS MEMBRANE FOR GAS SEPARATION HAS BEEN STUDIED IN TERMS OF PREPARATION ,IRA 0ATERSON :HAO ET AL AND APPLICATIONS SUCH AS FOR MEMBRANE REACTORANDBIOLOGICALPROCESSES-OHAMMADI 0AK THEMECHANISMOFTHEGASTRANSPORT ON THE MEMBRANE AND THE MEMBRANE DESIGN IS NOT WELL KNOWN SINCE IT INVOLVED COMPLEX EQUATIONS$UETOTHATTHISPAPERWILLPRESENTA SHORTCUTMETHODOFDESIGNINGPOROUSMEMBRANE SYSTEM4HENOVELAPPROACHOFTHISPAPERISTHAT THEREQUIREDMEMBRANEAREACOULDBEEXPRESSED ASTHEPRODUCTOFTHEHEIGHTOFATRANSFERUNIT (45ANDTHENUMBEROFTRANSFERUNIT.45(45 DESCRIBEDTHEDIMENSIONPARAMETERWHILE.45 REPRESENTTHEDIMENSIONLESSPARAMETER &IGURE SHOWS THE CROSSmOW PATTERN OF A POROUSMEMBRANEMODULE4HELOCALPERMEATION RATEOFCOMPONENT!OVERDIFFERENTIALMEMBRANE AREAD!-ATANYPOINTINTHESTAGEISGIVENAS

(3)

%QUATION COMBINES WITH EQUATION TO ELIMINATEYANDOBTAIN

7HENTHEDOWNSTREAMPRESSUREISNOTNEGLIGIBLE COMBININGTHEDElNITIONOFRWITHEQUATION

α

CANBEEXPRESSEDASBELOW

3UBSTITUTINGYYANDXXYXY INTOEQUATION

7ITHCOMBINEEQUATION AND ANDREPLACEX WITHX WEOBTAINTHESEPARATIONFACTORAS

WHERE

α

AREDElNEDASTHEACTUALSEPARATION FACTORFORCOMPONENTAND

&ORACONSTANTVALUEOFSEPARATIONFACTOR

α

α

FORENTIRERANGEOFCUTθNPNFITHEINTEGRATION OFEQUATION SHALLGIVE

WITHYANDXISTHEMOLEFRACTIONOFLOCALPERMEATE AND REJECTION STREAM ALONG THE STREAM+IS THEPERMEABILITYOFCOMPONENT!THROUGHTHE MEMBRANEL-ISTHETHICKNESSOFTHEMEMBRANE

0&AND00ARETHEPRESSUREINTHEFEEDANDPRODUCT

OFTHEMEMBRANERESPECTIVELY

$IVIDINGEQUATION BY ANDTAKING

GIVES

WHERE

α

IS DEFINED AS THE IDEAL SEPARATION FACTOR !SSUMING THE PRESSURE RATIOR AND THE IDEALSEPARATIONFACTOR

α

ARECONSTANTTHENTHE DIFFERENTIALRATEOFMASSTRANSFEROFCOMPONENT!

ACROSSTHEMEMBRANEISGIVENAS

7HILE FOR THE ACTUAL SEPARATION FACTOR

α

IS DElNEDAS

&)'52%#ROSSmOWMODELFORMEMBRANEMODULE

(4)

3INCETHEMODELLINGISRATEDBASEDTHELENGTHOF BOTHMODULESCOULDBEEXPRESSEDASTHEPRODUCT OF THE HEIGHT OF A TRANSFER UNIT(45 AND THE NUMBEROFTRANSFERUNIT.45

4HEREQUIREDMEMBRANEAREAISGIVENBY AM = n

T π DL

WITHN4ISDElNEDASNUMBEROFTUBES$ISTHE MEMBRANEDIAMETERAND,GIVESTHEMEMBRANE LENGTH%QUATIONS AND COULDBEREWRITTEN INTHEFORMOF.45AND(45BY

3UBSTITUTINGEQUATIONS AND TOEQUATION THEMEMBRANELENGTHISGIVENASBELOW

WHERE

AND

4HEMOLEFRACTIONOFCOMPONENTINTHElNAL PERMEATESANDTHETOTALMEMBRANESURFACEAREA ISOBTAINEDBYINTEGRATINGTHEVALUESOBTAINED FROMSOLVINGEQUATIONS AND

#OMBINING EQUATION AND THE DElNITIONFOR

α

THEINTEGRALSHALLGIVE

WHEREX&ISTHEMOLEFACTIONOFCOMPONENT INFEEDSTREAMSWHILEX2ANDY2ARETHELOCAL PERMEATE AND RENTENTATE IN THE MEMBRANE UNIT AND CAN BE SOLVED USING INGENIOUS TRANSFORMATION EQUATIONS 'EANKOPLIS

&ORMULTICOMPONENTGASSEPARATION

AND

WHEREIISDElNEDASNUMBEROFCOMPONENT (ERECROSSmOWMODELSFORPOROUSMEMBRANE AREDEVELOPEDBYCONSIDERINGMASSBALANCEATA DIFFERENTIALELEMENTOFTHECROSSmOWMODULEAND THENINTEGRATINGTHEEXPRESSIONOVERTHEWHOLE MODULE TO GET THE MODULE LENGTH 4HE LOCAL PERMEATIONRATEOFCOMPONENT!OVERDIFFERENTIAL MEMBRANEAREAdA

MATANYPOINTINTHESTAGEIS GIVENAS

(5)

4HEDIFFUSIVITYINTHE+NUDSENmOWREGION$+N ISGIVENAS

WHEREDPOREIS MEMBRANE PORE DIAMETERεPIS VOLUMEFRACTIONINTHEPORESτ+NISTHETORTUOSITY -ISTHEMOLECULARWEIGHTOFTHEGASAND4ISTHE ISOTHERMALOPERATING

&ORMULTICOMPONENTGASTHEDIFFUSIVITYOFGAS DIFFERSACCORDINGTOTHEMOLEFRACTIONOFTHEGAS INTHEMIXTUREASBELOW

4HEDIFFUSIVITYOFABINARYGASMIXTUREINTHE DILUTEGASREGIONATLOWPRESSUREPREDICTEDAS BELOW/THMAN

WHERE$!"ISTHEDIFFUSIVITYOFCOMPONENT!AND"

4ISTEMPERATURE0ISABSOLUTEPRESSUREAND-!"

ISTHEAVERAGEMOLECULARWEIGHTFORCOMPONENT

! AND " SYSTEM THAT CAN BE PREDICTED BY EQUATION 4HEABOVEEQUATIONCONSIDERSTHE INTERMOLECULARFORCESOFATTRACTIONANDREPULSION BETWEENMOLECULESANDALSOTHEDIFFERENTSIZES OF MOLECULES ! AND " OBTAINED BY CORRELATION USINGTHESUMOFATOMICVOLUMESV4HEABOVE EQUATIONCANBEUSEDFORMIXTURESOFNONPOLAR GASESORFORPOLARNONPOLARMIXTURES!SCANBE SEENTHEEQUATIONSHOWSTHAT$!"ISPROPORTIONAL TO0AND4

0RESSURE3WING!DSORBER03!

03!PROCESSESFORSEPARATIONANDPURIlCATIONOF GASEOUSMIXTURESHAVEBECOMEIMPORTANTUNIT OPERATIONSINTHECHEMICALPROCESSINDUSTRY!

LARGE VARIETY OF BINARY AND MULTI COMPONENT GASMIXTURESARECOMMERCIALLYSEPARATEDUSING THIS TECHNOLOGY 2AJASREE -OHARIR )N THISSTUDYTHE03!UNITISCOOPERATEDINPARALLEL WITHMEMBRANEUNITTOREMOVETHEEXISTING#/

WITHXAND Y ARE DElNED AS LOCAL RENTENTATE ANDPERMEATEOFCOMPONENTRESPECTIVELYAT ANY POINT ALONG THE MEMBRANE ANDXCAN BE ESTIMATEDASBELOW

ASSUMINGXX&

ANDXISTHELOCALRENTENTATEISITERATIONOFXFROM TONSECTIONWHILE&ORLOCAL PERMEATE YCAN BE SOLVED FOR EACH XUSING EQUATION

4HE TERM(45 IS A DIMENSION PARAMETER THAT CHARACTERIZES THE PHYSICAL APPEARANCE OF A MEMBRANE 0RINCIPALLY THE(45 FOR POROUS MEMBRANEDESCRIBESTHEDESIGNPARAMETERFORA MEMBRANEUNIT!SCANBESEENINEQUATION ITVARIESWITHTHEFEEDmOWRATEN&MEMBRANE THICKNESSL-ANDDECREASESWITHFEEDPRESSURE

0& PERMEABILITY OF GAS+ AND DIAMETER OF A

MEMBRANE$-4HESTAGECUTDOESNOTAFFECTTHE (45VALUEANDITISCONSTANTALONGTHEMEMBRANE 7HILETHESOLUTIONOFTHEINTEGRALREPRESENTING THE.45OFGASSEPARATIONISCALCULATEDBASEDON THEMOLEFRACTIONOFCOMPONENTINPERMEATES AND RETENTATE STREAM ALONG THE MEMBRANE AT DIFFERENT&ROMEQUATION ITWASOBSERVED THAT THE TERM OF .45 HIGHLY DEPENDS ON THE LOCALRENTENTATEOFCOMPONENTWHICHISFROM X&TOX2

0ERMEABILITYOF-EMBRANE

4HEREARETHREETYPESOFmOWINPOROUSMEMBRANES DIFFERINGINPOROUSSIZE)FTHEPORESARERELATIVELY LARGE FROM TO μM GASES PERMEATE THE MEMBRANEBYCONVECTIVEmOWANDNOSEPARATION OCCURS)FTHEPORESARESMALLERTHANμMTHEN THEPOREDIAMETERSARETHESAMESIZEASORSMALLER THANTHEMEANFREEPATHMOLECULES$IFFUSION THROUGH SUCH PORES IS GOVERNED BY +NUDSEN DIFFUSION AND THE TRANSPORT RATE OF ANY GAS IS INVERSELYPROPORTIONALTOTHESQUAREROOTOFITS MOLECULAR WEIGHT 4HE POSSIBLE PERMEABILITY FORMULTICOMPONENTGASINCERAMICMEMBRANE IS EXPRESSED AS BELOW ASSUMING NO MOLECULAR DIFFUSIONOCCUR

(6)

WHEREC& IS THE FEED CONCENTRATION OF THE COMPONENTAND

4HEMASSTRANSFERCOEFlCIENTKISCALCULATEDUSING THE CORRELATIONS OF7AKAO AND &UNAZKRI 7AN 2AMLI WHICHISGIVENBY

WHERE3HKDP$ISTHE3HERWOODNUMBER2E 'DPμ IS THE 2EYNOLDS NUMBER 3Cμρ$ IS THE3CHMIDTNUMBER$ISTHEDIFFUSIVITYOFTHE COMPONENTINTHECARRIERGASAND'ISTHEMASS mUXOFGAS4HEDIAMETEROFTHEBED$0ISGIVEN ASFOLLOWS

WHERE1&ISTHEVOLUMETRICmOWRATEOFFEEDGAS 4HELENGTHOFTHEADSORBERISESTIMATEDASTHE LENGTH OF ADSORBENT FULLY SATURATED WITH THE ADSORBATEINEQUILIBRIUMWITHTHECOMPONENTIN THEGAS4HEMASSBALANCEFORTHISCASEGIVES

OR

"YUSINGTHISRELATIONSHIPBETWEENTHEIDEALTIME ANDTHEIDEALLENGTHTHERATIOOF+LINKENBERGS DIMENSIONLESS IDEAL TIME AND +LINKENBERGS DIMENSIONLESSIDEALLENGTHISGIVENSIMPLYBY

INTHESTREAMBEFOREENTERINGTHEFUELCELLSTACK (EREWEUSEA03!BECAUSEITISFOUNDTHAT03!

HASANUMBEROFADVANTAGESINTERMSOFPRODUCT PURITYPRODUCTCOSTOPERATINGCOSTANDCAPITAL COSTPRODUCTRECOVERYANDHIGHENERGYEFlCIENCY )YUKEETAL*AINETAL

!03!PROCESSISQUITECOMPLICATEDANDTHERE ARE MANY PARAMETERS TO BE DECIDED AND NOT MANYGENERALEASYTOUSEDESIGNRULESAVAILABLE SO FAR $UE TO THAT THIS PAPER WILL INTRODUCE A SHORTCUTDESIGNMETHODTODESIGNA03!4HE CONVENTIONALDESIGNMETHODBY#OLLINSDEPENDS ONBREAKTHROUGHCURVESDATAOFABENCHSCALE ADSORBERISCLEARLYNOTSUITABLEASASHORTDESIGN METHOD)NTHISPAPERANOVELSHORTCUTMETHOD DEPENDINGONLYONTHELINEARADSORPTIONISOTHERM AND GAS ADSORBENT MASS TRANSFER IS PRESENTED 4HE METHOD USES THE +LINKENBERG SOLUTION OF THEBREAKTHROUGHCURVEFORALINEARDRIVINGFORCES MASSTRANSFERANDALINEAREQUILIBRIUMISOTHERM

!RELATIONSHIPBETWEENTHEDIMENSIONLESSTIME τANDTHEDIMENSIONLESSBEDLENGTHξWHICHARE FUNCTIONOFTHEBED$AUDUTILISATIONPARAMETER δ7AN2AMLI AREINTRODUCEDHERE !T EQUILIBRIUM CONDITIONS THE ADSORPTION ISOTHERM OF AN ADSORBATE ON A PARTICULAR ADSORBENT COULD BE EXPRESSED IN THE FORM OF (ENRYS,AW

WHEREQISTHECONCENTRATIONOFTHECOMPONENT INTHEADSORBEDPHASEANDCISTHECONCENTRATION OFTHECOMPONENTINTHEGASPHASEINEQUILIBRIUM WITHTHEADSORBEDCOMPONENT4HEADSORPTION OFTHECOMPONENTINAPACKEDBEDOFADSORBENT ISGIVENBY

WHERE$,ISTHEAXIALDISPERSIONCOEFlCIENTUIS THEINTERSTITIALVELOCITYANDεASTHEBEDPOROSITY )F THE MASS TRANSFER OF THE COMPONENT TO THE ADSORBENTFOLLOWSALINEARDRIVINGFORCEMODEL THAN

)FAXIALDISPERSIONISNEGLECTED$, ANDTHE VELOCITYISCONSTANTTHENTHESOLUTIONOFEQUATION EXPRESSEDASABREAKTHROUGHCURVEISGIVEN AS

(7)

!BEDUTILIZATIONFACTORAND

δ

ISDElNEDBYANDKNOWNAS

$AUDUTILISATIONFACTOR

#OMBINING EQUATIONS AND YIELDS

%QUATION THAT HAS NOT BEEN DERIVED EXPLICITLYBEFORERELATESτANDξWITHδINASIMPLE MANNER)NFACTTHISEQUATIONISCONSISTENTBECAUSE IFδTHENEQUATION REDUCESTOEQUATION %QUATION ISSOLVEDSIMULTANEOUSLYWITH EQUATION ATCC&ANDVARIOUSVALUESOFδTO GETTHEACTUALCURVESOFτANDξ4HESOLUTIONOF τANDξISTHENEXPRESSEDASAFUNCTIONOFTHEBED UTILIZATIONFACTORδ

2%35,4!.$$)3#533)/.

)N THIS STUDY THE TRANSPORT OF HYDROGEN COMPONENT AND #/ COMPONENT WERE COMSIDERED IN THE4#- 4HE FOLLOWING ASSUMPTIONSAREINTRODUCEDINTHEFORMULATION OFTHETHEORETICALFRAMEWORK 4HETRANSPORT PROCESSISISOTHERMAL 4HEREARENOCHEMICAL REACTION

4HE TRANSPORT ACROSS THE MEMBRANE IS CONSIDERED AS CROSS FLOW AND LATER IT ENTERS THE 03! UNIT REFER TO &IGURE 4ABLE AND SUMMARIZED THE PHYSICAL AND MECHANICAL PROPERTIESOF4#-AND03!"OTHDESIGNMODELS WERESOLVEDUSING%XCELSHEETAND-ATLAB

&)'52%3CHEMATICDIAGRAMOF#/REMOVALSYSTEM

&IGUREPLOTSTHEPERMEABILITY+FOR(AND#/

4HEPERMEABILITYISEXPRESSEDINGMOLCMCM SATM4HEPERMEABILITYISCALCULATEDFOR²#

AND ²# &ROM THE RESULT IT CAN BE SEEN THAT THEPERMEANCEFOR(AND#/ARESLIGHTLYLOWER FORŽ#

&IGUREPREDICTTHEMAXIMUMANDMINIMUM VALUESOFPERMEANCEFOR(Y0 AND#/YP USING SHORTCUT DESIGN METHOD )T IS OBSERVED THATTHEMAXIMUM(CONTENTOFTHEPERMEATE MOL OCCURSWITHTHESMALLESTAMOUNTOF PERMEATEθ 4HEMAXIMUM#/CONTENTOF THERENTENTATEABOUT OCCURSWITHTHELARGEST

4HECOMPOSITION OFREFORMATE

MOLE

0OROSITY ε

4ORTUOSITY

τ+N R -ODULE 4YPE

(#/

#/ 4UBULAR

4HE COMPOSITION OFREFORMATE MOLE

0OROSITY ε

-ASS TRANSFER COEFlCIENT

K

2ATE CONSTANT

+ δ

(

#/

#/

MS

4!",%4HEPHYSICALANDMECHANICALPROPERTIESOF4#-

4!",%4HEPHYSICALANDMECHANICALPROPERTIESOF03!

(8)

ISOBSERVEDTHEVALUEOF.45INCREASESWITHCUT ASTHEREJECTIONX2OFHYDROGENREDUCESSHARPLY COMPAREDTOTHEDECREMENTSOFTHEHYDROGEN PERMEATIONY0!SARESULTITCANBECONCLUDED THATTHE.45DESCRIBEDTHEDEGREEOFSEPARATION RELATIVELYINTERMOFLOCALPERMEATEANDRETANTATE 4HEHIGHERTHEVALUEOF.45ITPREDICTSAHIGHER DEGREEOFSEPARATION

&IGUREPLOTSTHESURFACEAREAOFTHEMEMBRANE REQUIREDFORTHESYSTEMBASEDON.45VALUEFOR DIFFERENTFLOWRATES&ROMTHERESULTITCANBE

OBSERVEDTHATTHESURFACEAREAOFTHEMEMBRANE IS INVERSELY PROPORTIONAL WITH PERMEANCE !T LOW CUT WITH HIGH PERMEATE THE SURFACE AREA OF MEMBRANE ARE SMALL 4HIS IS DUE TO THE AMOUNTOFPERMEATEθ 7ITHARENTENTATE

EQUALTO MOLOFTHE FEED θ THE#/

CONTENT OF THE PERMEATE HAD DECREASED FROM PPMTOPPM4HEPERMEANCEOF(HAD INCREASEFROMTO

4HISSHOWTHATTHISPOROUSCERAMICMEMBRANE DPORENM ISCAPABLEOFREMOVING#/ANDCAN BEUSEASONEOFTHEPURIlCATIONSYSTEMINTHEFUEL CELLSYSTEM4HERESULTISCOMPARABLEWITHSTUDIES BY,EEETAL OBTAINEDPURIlCATIONOF (OVER#/USINGPOROUSSILICA

&IGURESTOCHARACTERIZEDBY.45FORCERAMIC MEMBRANES THAT ARE GIVEN IN LOGARITHM SCALE

&IGUREGIVESTHERELATIONBETWEEN.45ANDCUT θFORDIFFERENTR#OMPARING&IGURESANDIT

&)'52%2ESULTSOFPERMEABILITYFORDIFFERENTTEMPERATURE

( CO

&)'52%-OLEFRACTIONOFY0ANDX2FOR(COMPONENT AND#/COMPONENT ATDIFFERENTCUTθ

(9)

&)'52%4HE.45VALUEVERSUSCUTθATDIFFERENTVALUESOFR

&)'52%2ESULTSOFTHE.45AND!-FORCERAMICMEMBRANEFORDIFFERENTFEEDmOWRATE

&)'52%2ESULTSOFTHE.4AND!-FORCERAMICMEMBRANEFORDIFFERENTPRESSURE

(10)

&)'52%4HEDESIGNCURVEOF03!

COMPETITIONOFMOLECULESTOPASSTHROUGHTHE MEMBRANEARELESSINLOWmOWRATEAND(ARE SEPARATEDEASILYWHILE&IGUREPLOTSTHEEFFECTOF PRESSUREONTHEMEMBRANESURFACEAREA)TWAS FOUNDTHATPRESSUREPLAYSANIMPORTANTROLEIN DESIGNINGAMEMBRANE4HEHIGHERTHEPRESSURE THE SMALLER THE SURFACE AREA OF MEMBRANE REQUIRED4HISISBECAUSETHEMOLECULESAREEASILY SEPARATEDATHIGHPRESSURE

4HEFOLLOWING&IGURESDESCRIBETHE03!

UNITINTHESYSTEM&ORA03!THECYCLETIMEFOR INCREASING AND DECREASING PRESSURE IS SHORT SOTHEVALUEOFδISTYPICALLYSMALL4HE LENGTHOFTHEADSORBENTANDTHEBREAKTHROUGH TIMEARECALCULATEDBYOBTAININGTHEVALUESOFξ ANDτ&IGURESHOWTHESOLUTIONFORξANDτAS AFUNCTIONOFTHEBEDUTILISATIONFACTORδWHILE

&IGURE PLOT THE BREAKTHROUGH TIME AND THE BEDLENGTHINTHEADSORPTIONUNITWHEREBYCCF

ISTAKENAS&ROMTHEPLOTTHEBREAKTHROUGH TIMEATδISESTIMATEDASMINFORABED LENGTHOFMWITHADIAMETEROFM &IGUREANDPLOTSTHEEFFECTOFBEDLENGTH ANDDIAMETERTOWARDSTHEINTERSTITIALVELOCITYU ANDTHEFEEDmOWRATE1&&ROM&IGUREITIS OBSERVEDTHATTHELENGTHINCREASELINEARLYWITH THEUWHILETHEDIAMETERDECREASEEXPONENTIALLY )N&IGUREITCANBESEENTHATTHEDIAMETEROF THE 03! UNIT INCREASE EXPONENTIALLY WITH FEED mOWRATEWHEREASTHELENGTHDOESNOTCHANGE 4HIS IS BECAUSE THE LENGTH OF ADSOBER ONLY DEPENDSTOTHEVALUEOFINTERSTITIALVELOCITYU &INALLY&IGUREILLUSTRATESTHECONCENTRATION OF(AND#/INMOLEPERCENTAGE!SARESULTTHE

#/ISREDUCEDFROMPPMTOPPMAFTER THE4#-ANDFURTHERREDUCEDTOLESSTHANPPM AFTERTHE03!UNIT

4ABLESUMMARIZEDTHEDESIGNPARAMETERS FOR THE BASECASE FOR 4#- AND 03! UNITS

4#- 03!

&EEDmOWRATEN&MMIN &EEDmOWRATEMMIN

4EMPERATUREŽ# 4EMPERATUREŽ#

0RESSURERATIOR 0RESSUREBAR

$EGREEOFSEPARATIONθ "EDFACTORδ

0ORESIZEDPORENM 4IMEMIN

4HICKNESSOF-EMBRANEL-›M (EIGHTM -EMBRANEAREA!-M "EDDIAMETERM

4!",%$ESIGN0ARAMETERSFOR4#-AND03!

(11)

&)'52%0LOTSSHOWTHEBREAKTHROUGHTIMEANDTHE03!LENGTH

&)'52%4HERESULTOFADSORBERLENGTHANDDIAMETERFORDIFFERENTINTERSTITIALVELOCITY

&)'52%4HERESULTOFADSORBERLENGTHANDDIAMETERFORDIFFERENTINTERSTITIALVELOCITY

(12)

#/.#,53)/.

&OR MEMBRANE IT CAN BE CONCLUDED THAT THE LENGTH AND MEMBRANE AREA OF MEMBRANE MODULES FOR CROSS FLOW COULD BE DETERMINED USINGTHECROSSmOWMODELWHOSESOLUTIONCOULD BEEXPRESSEDINSIMPLIlEDTERMSOFTHE.45AND (454HEINTEGRALOF.45ISTHESOLUTIONFORTHE LOCAL PERMEATE ALONG THE ALONG MEMBRANE )T WAS FOUND THAT.45 FOR POROUS MEMBRANE MAINLYDEPENDSONYANDXLOCALPERMEATEAND RETANTATECUTθACTUALSEPARATIONFACTORαAND RATIOOFPRODUCTANDFEEDPRESSURERALONGTHE MEMBRANEANDRELATIVELYPREDICTSTHEDEGREEOF SEPARATIONWHILETHE(45CHARACTERIZEDBYTHE PHYSICALPROPERTYOFTHEMEMBRANE

"ESIDES THAT AS A 03! PROCESS IS QUITE COMPLICATED AND THERE ARE MANY PARAMETERS

TOBEDECIDEDTHISSTUDYSIMPLIlEDTHEDESIGN BY USING THE +LINKENBERG SOLUTION OF THE BREAKTHROUGH CURVE FOR A LINEAR DRIVING FORCE MASSTRANSFERANDALINEAREQUILIBRIUMISOTHERM 2ELATIONSHIP BETWEEN THE DIMENSIONLESS TIME τANDTHEDIMENSIONLESSBEDLENGTHξTHATARE FUNCTIONOFTHE$AUDBEDUTILISATIONPARAMETERδ WASINTRODUCED4HERECOMMENDEDVALUEOFδFOR 03!ISABOUTRESULTINGINSHORTADSOBERS

!#+./7,%$'%-%.43

4HEAUTHORSGRATEFULLYACKNOWLEDGETHElNANCIAL SUPPORT GIVEN FOR THIS WORK BY THE -ALAYSIAN -INISTRY/F3CIENCE4ECHNOLOGY!ND%NVIRONMENT -/34% UNDER THE )NTENSIlCATION 2ESEARCH IN 0RIORITY!REAS)20! BY'RANT.O)20!

02 ./-%.#,!452%

!- !SURFACEAREAOFMEMBRANE C #ONCENTRATIONINGASPHASE C %QUILIBRIUMCONCENTRATION

$ $IFFUSIVITY

$, !XIAL$ISPERSION

$P "ED$IAMETER

$!" $IFFUSIVITYOFCOMPONENT!AND"

DPDPORE0OREDIAMETER

$T 4UBEDIAMETER ' -ASSmUXOFGAS

(45 (EIGHTOFHEATTRANSFERUNIT K -ASS4RANSFER#OEFlCIENT + 2ATEOFCONSTANT

+ 0ERMEABILITYFORCOMPONENT

++N 0ERMEABILITYBYGOVERNEDBY+

NUDSENmOW , ,ENGTH ,B "ED,ENGTH

L- -EMBRANETHICKNESS

-! -OLECULARWEIGHTFOR COMPONENT!

-" -OLECULARWEIGHTFOR

COMPONENT"

-!" !VERAGEMOLECULARWEIGHTFOR

COMPONENT!AND"

NN& &EEDmOWRATE

&)'52%2ESULTSOFTHEMOLEPERCENTAGEOF(AND#/IN4#-AND03!

(13)

N0 0ERMEATEmOWRATE N2 2ETENTATEmOWRATE N4 .UMBEROFTUBE

.45 .UMBEROFHEATTRANSFERUNIT 0 !BSOLUTEPRESSURE

0& &EEDPRESSURE

00 0RODUCTPRESSURE

Q #ONCENTRATIONINADSORBED0HASE

1& 6OLUMETRICmOW2ATE/F&EED

2 )DEALGASCONSTANT 2E 2EYNOLDS.UMBER 2G -OLECULERADIUS

2 2ATIOOFPRODUCTPRESSURETOFEED PRESSURE

RP 0ORERADIUS

RG 'ASMOLECULERADIUS 3C 3CHMIDT.UMBER 3H 3HERWOOD.UMBER 4 4EMPERATURE T 4IME

TIDEAL )DEAL4IME

U )NTERSTITIAL6ELOCITY

X -OLEFRACTIONINLOCALRENTENTATE X -OLEFRACTIONOFCOMPONENTLOCAL REJECTION

X2 4OTALMOLEFRACTIONOFCOMPONENTIN REJECTIONmOW

X -OLEFRACTIONOFCOMPONENTLOCAL REJECTION

X& -OLEFRACTIONOFCOMPONENTINFEED

STREAM

XIX0I -OLEFRACTIONFORINUMBEROF COMPONENTSINREJECTION

X2 -OLEFRACTIONFORRETENTATE Y -OLEFRACTIONINLOCALPERMEATE Y -OLEFRACTIONOFCOMPONENTLOCAL PERMEATE

X0 4OTALMOLEFRACTIONOFCOMPONENTIN PERMEATEmOW

Y -OLEFRACTIONOFCOMPONENTLOCAL PERMEATE

YIY0I -OLEFRACTIONFORINUMBEROF COMPONENTSINPERMEATE Y0 -OLEFRACTIONFORPERMEATE 'REEK3YMBOLS

α )DEALSEPARATIONFACTOR α !CTUALSEPARATIONFACTOR

α 3EPARATIONFACTORFORCOMPONENTOVER COMPONENT

ε "EDPOROSITY

ξ $IMENSIONLESSLENGTH τ $IMENSIONLESSTIME

τIDEAL )DEALDIMENSIONLESSTIME

τ+N 4ORTUOSITY μ 'ASVISCOSITY

δ "EDUTILISATIONPARAMETER ρ 'ASDENSITY

V!V" !TOMICVOLUMESFORCOMPONENT!AND"

θ 3TAGEORCUTN0N&

α 3EPARATIONFACTOR α )DEALSEPARATIONFACTOR 2%&&%2%.#%3

'EANKOPLIS # 4RANSPORT 0ROCESS AND 5NIT /PERATIONS0RENTICE(ALL%NGLEWOOD#LIFFS.EW

*ERSEY

(EIZEL!(EBLING#-ULLER-:EDDA--ULLER#

&UELCELLSFORLOWAPPLICATIONS*OURNALOF 0OWER3OURCES

)YUKE3%$AUD727-OHAMMAD!"+ADHUM

!!(&ISAL:3HARIFF!-!PPLICATION /F 3NACTIVATED CARBON IN PRESSURE SWING ADSORPTION FOR PURIFICATION ON (*OURNAL

#HEMICAL%NGINEERING3CIENCE

*AIN3-OHARIR!3,I07OZNY'(EURISTIC

$ESIGN OF 0RESSURE 3WING !DSORPTION ! PRELIMINARY STUDY*OURNAL /F 3EPARATION 0URIlCATION4ECHNOLOGY

*AYARAMAN6,IN933YNTHESISANDHYDROGEN PERMEATIONPROPERTIESOFULTRATHINPALLADIUM SILVER ALLOY MEMBRANES*OURNALOF-EMBRANE 3CIENCE

+AST7(OHENTHANNER#2-ASSTRANSFERWITHIN THE GASPHASE OF POROUS MEDIA )NTERNATIONAL

*OURNALOF(EATAND-ASS4RANSFER ,EE $7 ,EE9' .AM 3% 3EA " ,EE +(

0REPARATION AND CHARACTERIZATION OF 3I/COMPOSITEMEMBRANEFORPURIlCATIONOF HYDROGENFROMMETHANOLSTEAMREFORMINGASAN ENERGYCARRIERSYSTEMFOR0%-&#3EPARATIONAND 0URIlCATION4ECHNOLOGY

,IRA ( $ , 0ATERSON 2 .EW AND MODIlED ANODICALUMINAMEMBRANES0ART)))0REPARATION AND CHARACTERIZATION BY GAS DIFFUSION OF NM PORESIZEANODICALUMINAMEMBRANES*OURNAL OF-EMBRANES3CIENCE -ANDAL 3 0ANGARKAR 6 %VAPORATION

DEHYDRATION OF METHOXY PROPANOL WITH ACRYLONITRILE BASED COPOLYMER MEMBRANES PREPARED THROUGH EMULSION POLYMERIZATION A SOLUBILITY PARAMETER APPROACH AND STUDY OF STRUCTURALIMPACT*OURNALOF-EMBRANES3CIENCE -OHAMMADI4 0AK ! -AKING ZEOLITE ! MEMBRANES FORM KAOLIN BY ELECTROPHORESIS -ICROPOROUSAND-ESOPOROUSMATERIAL

/THMAN -2 +AJIAN PEMISAHAN 'AS 0ADA -EMBRAN-EMBRANTAKORGANIC 4ESIS $R &AL 5NIVERSITI3AINS-ALAYSIA

(14)

1I8,IN93#ERAMICGLASSCOMPOSITEHIGH TEMPERATURESEALSFORDENSEIONICCONDUCTION CERAMIC MEMBRANES *OURNAL OF -EMBRANES 3CIENCE

2AJASREE 2 -OHARIR !3 3IMULATION "ASED 3YNTHESIS$ESIGNAND/PTIMIZATION/F0RESSURE 3WING !DSORPTION 03! 0ROCESS*OURNAL /F

#OMPUTERS #HEMICAL %NGINEERING

7AN2AMLI7AN$AUD0RINSIPREKABENTUKPROSES KIMIA"ANGI)NSTITUSI*URUTERA+IMIA-ALAYSIA :HAO9:HONG*,I(8U.3HI*&OULING

AND REGENERATION OF CERAMIC MICRO FILTRATION MEMBRANES IN PROCESSING ACID WASTEWATER CONTAINING FINE 4I/ PARTICLES*OURNAL OF MEMBRANE3CIENCE

Rujukan

DOKUMEN BERKAITAN

As a conclusion, a high degree of lactose removal from goat’s milk could be achieved by 10 KDa UF membrane in a cross-flow hollow fiber system, which proved that different

For the transportation of protein into the membrane or the periplasmic space or outer membrane in the Gram-negative bacteria (E.coli), two systems have been

Through Figure 4.17, it can be concluded that regardless of the f-CNF loading on the membrane, as the concentration of glycerol draw solution increases, a larger

From the results, it can be concluded that unit weight and aerial intensity of newspaper membrane embedment have an immense effect on the thermal conductivity of

This experiment reviewed to investigate the removal efficiency of heavy metal and permeate flux by using cross- flow membrane filtration under different operation

Supported liquid membrane (SLM) is a good and promising technology for the removal of phenol from wastewater because it provides maximum driving force for the separation of

In this paper, the microporous polymeric membrane for air filtration especially for fine particles removal is reviewed including mechanism of fine particle removal, membrane

that the membrane prepared with addition of Pluronic as modifier agent showed the best performance, i.e., the lowest flux decline and similar rejection could