CHAPTERS
CONCLUSION AND RECOMMENDATIONS
REFERENCES
[I] Abbasov, T., K'oksal, M., & Herdem, S. (1999), Theory of High-Gradient Magnetic Filter Performance, IEEE Trans. Magn.
[3] K.L MITTAL (1995), Particles on Surfaces, United States of America, Marcel Dekker, Inc
[4] JAKOB RudolfFrei (1937), Magnetic Filter, Bendix aviation Corpomtion, South Bend, Ind., United States Patent Office, 2149764 (patent)
[5] GREGORY Mark Vero and ANTHONY Michael Browne (2009), Magnetic Particle Removal Process,United States Patent Application Publication, 0242487 A1(Patent)
[6] Dan Busta, Parker Hannifln Corp, SpecifYing off-line filtration systems, Hydraulic
Filter Div. Metamora, Ohio
(http://www.hydraulicspneumatics.com/200/lssue/Article/False03303/!ssue)
[7] William C. YOUNG, Reginald S. ROBERTON. 1989, Turbine Oil Monitoring, ASTM International
[8] CARMON J. Bean (1969), Magnetic Filtration of Transmission Fluid, United States Patent Office, 3463 729 (Patent)
[9] ROGER M. Simonson (2010), Magnetic filter and Magnetic Filtering Assembly, United States Patent Application Publication, 0294706 AI (Patent)
[10] C.POL YON, S.PHOTHARIN, and K. WLANGNON (2010), Experimental study of a Longtudinal magnetic Filter, Department of Physics, Faculty of Science, Ubon Ratchathani University, Thailand
[11] R. K. Sinnott (2005), Coulson & Richardson's Chemical Engineering, Volume 6:
Chemical Engineering Design, 4th ed (Butterworth-Heinemann)
[12]Dan Norrgran (2008), Magnetic filtration: Producing fine high-purity feedstocks, Filtmtion and separation, Elsevier Ltd
[13] DAVID Jeffery Griffiths (1998), Introduction to Electrodynamics, Prentice Hall publication
[14] ALBERT Shadowitz (1988), The Electromagnetic Field, Courier Dover Publication
[15] Madhavi V. Sardeshpande, V.A Juvekar and Vivek V. Ranade (2011), Solid suspension in stirred tanks: UVP measurements and CFD simulations,India, Department of Chemical Engineering, Indian Institute ofTechnology Bombay
[16] PIERO m. Armtlllliilte and ERNESTO Uehara Nagamiru:l (1997), Effect of low offbottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks, New Jersey, Department of Chemical Engineering, Elsevier Science Ltd.
[17] J.J DERKSEN (2003), Numerical simulation of solids suspension in a stirred tank, The Netherlands, Kramers Laboratorlum Voor Fysische Technologies, Delft University of Technology
[18] Jouni SYRJANEN, Sanna HAA VISTO, Antti KOPONEN and Mikko MANNINEN (2009), Particle velocity and concentration profiles of sand-water slurry in stirred tank- Measurements and modeling, Finland, VTT Technical Research Centre of Findland, Seventh international Conference on CFD in the Minerals and Process Ind.
[19] Vasileios N. Vlachakis (2006); Turbulent Characteristics in stirring vessels:A numerical investigation, Virginia, Virginia Polytechnic Institute and State University [20] M.M Hafez, K. Oshima and D. Kwak (2010), Computational fluid Dynamics Review, USA, World Scientific Publishing Co. Pte, Ltd.
[21] George E. Totten, David K. Wills, Dierk G. Feldmann (2001), Hydraulic Failure Analysis: Fluids, Components and System Effects, American Society for Testings and Materials (STP 1339)
[22] Ashcroft, N. W. and Mermin, N.D. (1976), Solid State Physics, Saunders
APPENDICES Turbine Oil specifications
PETRONAS LUSRllCANTS
.JitK"'t&Tatm HC
Extended SlliJI"\oofltlllii' LITe Pn&-mi~;~Tn Qualllty TUTblne Olt
""""
~trona& ~~m t-t:=; ;"!> an -e~dee! :&ooer-.·~ IH'e tu~l"''e ;;111 ~a:~y .:se.·~-elopa:S to complete!)' fiatlllif)-':!!IIi' -~'i!f'lil ;unrlc~t:r;m !1'KjU:~er.ts. or llile;;ln. hy~~';!:rlc and 1\4l.T.e type-g31S tl..'¢1'rno~
coa.;ple wl1h seal'ITTg li-)'liit<li!m.
"Tha)" .;IN! '""~~~ 'o!o'l:h. llllgjl'lly~ed· >Jrrcorr·.~r.'li:Qfhilll ~ olllli a'I1CI tipeel.lllly _,~~ted high pentiiJnl.,~ 3C1Cifl-..-_1o p-ll"O'oil<!Je-gt!Qd 'VIIi-~.'115!'11~""'..,.. ~~c:ten5Ue5. l".;;tpild ;J.il" relea:&e.
pcotli'A~ -~011'. exc::..-l>ant OX!d:iltn::m ~3bllty and eJ:ce'hif''lt :n.a;.~ ;ond ~lcm ,._.~::..~- Appl~•
Recomre.e~ 1'01' ~ lr. :all f;l:@a.~. :nl'uroe<ectttc and l"r.!!lrne t')f;l:le ga& ILl mines req~ln"''g nDr-
;Jif!ttv.oe;srty.o-~~oils;. A:"$0 5UC3ble 1 ' o r - In !ipeecl reow~. an-CO"ffpN!RiorS-. vac<'..lli<'T! 3'1nd
~ 'ollo'et ;.u-r.p, ~~tie emu: rnOtJor$, llgi!Tlly IIP.lldeCI pta'n C~e::r.'lng!i :anCI er..f!<lt!r 'I!CfUI""""e!'lt :!"e~_umng tUT'OI1'1,e CH qL"..,.IIly.
cu.wm,.r· e-..ms
Supt;M;:w- OX''!I:a1/Qr. ~tn::ol a"ld ther:Jn31 ~Ill)--longer tl'te-. U.po5r:l!i -rr~
~~ded cu 541f'\o~CQ 1r.. ano:J ...:luoecl ooper:al!f"l!if .lind rn3in1V'!;;nCQ 1::0$1
Sa;.pef1tw wV.Er -~.:oucm oa~ur.y -I~ J;n>ee561~9 3!:"1Ci diEipo&a: ooet : -rln' .~tze.
ptortflcal'!liol'l !"<Be$)
LCW.O "P::arNng' ~d r.lpld aiT meloe3115o@- 1'>,.111 Tll-ICIIili:I<Tca:l!Of'l f~f'O!"'a"''CE! pe~3~)1T' ;!'II!J~
1>.pEE<tr. 1:lear1!1~ anc ,-.llo?stung 9ear ~lh.
Product "T!fplcala
.,.,,,,..,-,,_,.. ~.:.:· .,_,;, ~
..
<.;;.0 .-.,_. l"<>o'•l, •C
--... ,,"''''• -~-
~· eo...:..~:::
""""'""" ~--
-~·-'=""'• . ...,..._ .. -,we.-.•,_, _, '""
-""'""'"·
-..\ .~._
.
._.,., '"'"''"·:;'...,,, ... ,-"'·
,.,--..,,l'"'""'c·"'-c:
~'-'""''"'-"'-'·
.nu:. v;,..,..,.,,._,.. <.l••ot*
;,;:; - ... •o•
., >
,;,.,_.._ ~-.,__,;.
""-''"' :~
-~~,-~, .o-:..·.:.< ...
"·"' ,;,_. '-'·'-'
'·""' ·~
~'-'-'" '-"'--'" _._..,_. v.O:<
_-., . ._.
"·'" •.vr, •:./,~
~ "'"' .<<;_,"01 ,._.,,(, .. c_.,_.
.... .._. "',-;' uf<;. "-~"
~-~-··~ tlf.:· ~I·•-o.sL> r ... -, ....::.-(..'.•:· ... """'' f;.-:)
...
'•"·''-~ .-·e ,:,:-_
...
Product Typicals
Charac:·teristic:s l~O Vi,;co<>itv Gra~o;o
32 46 68 80 *
Density @ 15 oc. 0.857 0.877 0.874 0.876
kg/1
Pour Point, oc -12 -9 -9 -9
Flash Point~ °C 214 218 226 232
Kinematic V lscoslty, est
@40 oc 32.5 46.9 68.3 78.8
@ 100 °C 5.8 7.2 9.0 9.6
Viscosity Index 122 111 106 98
TAN, mgKOH/g 0.05 0.05 0.07 0.07
Rust Test Pass Pass Pass Pass
foan1ing
characte1·istics, rnl
'Sequence I 0/0 0/0 0/0 0/0
Sequence II 10/0 30/0 30/0 40/0
Sequence III 0/0 0/0 0/0 0/0
Water Separability 40/40(0 40/40/0 40/40/0 40/40/0
(10) (15) (20) (20)
RBOT, minutes 1774 1570 1226 1414
+Oxidation Control
> 15,000 > 15,000 > 15,000 > 15,000 (TOST), h.-s
Design of magnetic filter (Calculations)
The size of particles to be filtered is specified to 20p.m- 35pm. From Table, the magnetic field required to filter these range of particles size is 5000 Gauss or 0.5 Tesla.
The design is consist of two cylindrical permanent magnets, a stainless steel casing, and a shaft mounted on top of the casing that uses to rotate the impeller.
Design of magnetic filter using Catia software Separation distance between two magnets is 0.20m.
B
=
M· M= .!!...= O.ST llo ' JAo 4nx 10-7Tm/AM = 3.98 x 105 Aim= 398 Gauss= 0.04 T
Table 4: Magnetization value of permanent magnet Material Magnetization (f)
BaFe12019 0.36
Alnico IV 0.60
Alnico V 1.35
Alcomax I 1.20
MnBi 0.48
Ce(CuCo)s 0.70
SmCos 0.83
Sm2Co11 1.15
Nd2Fe1.JJ 1.20
4.3.1 Magnetic force between two cylindrical magnets
F
=
trllo M2 R4[2. + 1 _ _ 2 -]4 xZ (X+2L)Z (x+L)Z
Where
IJ.o= permeability of space, which equals 41txi0-7 T·m/A M =magnetization of magnet (Aim)
R
=
radius of each magnet, mx = separation between two magnets, m L = length of each magnet, m
= nx41a10-
7
T.m/A (3.98 X 105Ajm)2(0.0125m)4 ( -1-
+
1 -4 0.2m2 0.2m+2(0.1m)Z
2 (0.2m+0.1m>2 ]
=
0. 034 T. m.A4.3.2 Impeller
To study the types of impeller to be used in this project, the flow patterns have to be studied.
leg 60S 2
pNDz 8S7~x5.76rpmx -x0.175 m S
Re=--= m
i
= 3.26x 10ll 0.02785~
s
Since, Re
=
3.26 x 1 05 > 1 0000 so the flow is turbulent.Where
m = ffi XV= 857 kg/m3 X 1t X 0.152 X 0.15 = 9.09 kg w
=
shaft speedr =radius of particles, r <<small so the value is negligible
= w2
=
o.034=
3.74 x 10-39.09kg
=w =5.76 rpm
T = F. d = 9.09kg x 0.6032 x O.lm
=
0.33 N.m P = T. w = 0.33 x 5.76=
1.9 Watts0.175m Impeller